Coral Reefs

, Volume 37, Issue 3, pp 705–709 | Cite as

Conspicuous endolithic algal associations in a mesophotic reef-building coral

  • Fanny L Gonzalez-Zapata
  • Sebastián Gómez-Osorio
  • Juan Armando Sánchez


Understanding how corals and their symbionts specialize across depth gradients allows us to understand biodiversity in shallow and mesophotic coral ecosystems. Here we determined the prevalence of endolithic algal in Agaricia undata (17–83 m) and examined community changes within (shallow, upper and lower zones) and among sites (oceanic vs. continental siliciclastic influence). We observed exposed filaments of endolithic algae in some colonies, which in some cases surfaced the coral as tubular pipelines bridging A. undata costae. We also found multiple cryptic species within the monophyletic group of Ostreobium-like algae (12 rbcL types). Rarely explored as symbionts, Ostreobium in A. undata highlights its potential role in facilitating a broader depth range.


Mesophotic coral ecosystems Endolithic algae Symbiont Ostreobium spp. 



This study was supported by COLCIENCIAS Grant No. 120465944147, Universidad de los Andes (Vicerrectoria de Investigaciones-Programa de Investigación en Especiación Ecológica) and CORALINA (Convenios 13-2014 and 21-2015). We thank N. Bolaños, E. Castro, J. Andrade, F. García, O. Ruiz, D. Seguro, L. Dueñas, M. Forero, L. Gutierrez, M. Gómez, M. Marrugo, P. Bongaerts, C. Ramirez and A. Henao.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflicts of interest.

Supplementary material

338_2018_1695_MOESM1_ESM.docx (159 kb)
Supplementary material 1 (DOCX 25 kb)


  1. Coffroth MA, Lasker HR, Diamond ME, Bruenn JA, Bermingham E (1992) DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in a vegetative species. Mar Biol 114:317–325CrossRefGoogle Scholar
  2. Darriba D, Taboada GL, Doallo RR, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  3. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ellis J, Solander DC (1786) The natural history of many curious and uncommon zoophytes: collected from various parts of the globe. B. White and Peter ElmslyGoogle Scholar
  5. Fine M, Loya Y (2002) Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc Biol Sci 269:1205–1210CrossRefPubMedPubMedCentralGoogle Scholar
  6. Golubic S, Radtke G, Le Campion-alsumard T, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235CrossRefPubMedGoogle Scholar
  7. Gonzalez-Zapata FL, Bongaerts P, Ramírez-Portilla C, Adu-Oppong B, Walljasper G, Reyes A, Sanchez JA (2018) Holobiont diversity in a reef-building coral over its entire depth range in the mesophotic zone. Front Mar Sci 5:29CrossRefGoogle Scholar
  8. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  9. Gutner-Hoch E, Fine M (2011) Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals. Coral Reefs 30:643–650CrossRefGoogle Scholar
  10. Koehne B, Elli G, Jennings RC, Wilhelm C, Trissl HW (1999) Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. Biochim Biophys Acta Bioenergy 1412:94–107CrossRefGoogle Scholar
  11. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278CrossRefPubMedPubMedCentralGoogle Scholar
  12. Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Bio Ecol 375:1–8CrossRefGoogle Scholar
  13. Magnusson S, Fine M, Kühl M (2007) Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrica. Mar Ecol Prog Ser 332:119–128CrossRefGoogle Scholar
  14. Pyle RL (1998) Use of advanced mixed-gas diving technology to explore the coral reef “twilight zone”. In: Ocean pulse, pp 71–88Google Scholar
  15. Ralph PJ, Larkum AWD, Kühl M (2007) Photobiology of endolithic microorganisms in living coral skeletons: 1. Pigmentation, spectral reflectance and variable chlorophyll fluorescence analysis of endoliths in the massive corals Cyphastrea serailia, Porites lutea and Goniastrea australensis. Mar Biol 152:395–404CrossRefGoogle Scholar
  16. Reid NM, Carstens BC (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evol Biol 12:196CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  18. Sauvage T, Schmidt WE, Suda S, Fredericq S (2016) A metabarcoding framework for facilitated survey of endolithic phototrophs with tufA. BMC Ecol 16:8CrossRefPubMedPubMedCentralGoogle Scholar
  19. Schlichter D, Zscharnack B, Krisch H (1995) Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften 82:561–564CrossRefGoogle Scholar
  20. Shashar N, Stambler N (1992) Endolithic algae within corals-life in an extreme environment. J Exp Mar Biol Ecol 163:277–286CrossRefGoogle Scholar
  21. Slattery M, Lesser MP (2012) Mesophotic coral reefs: a global model of community structure and function. In: Proceedings of 12th international coral reef symposium cairns, pp 9–13Google Scholar
  22. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  23. Sunagawa S, Desalvo MK, Voolstra CR, Reyes-bermudez A (2009) Identification and gene expression analysis of a taxonomically restricted cysteine-rich protein family in reef-building corals. PLoS One 4:e4865CrossRefPubMedPubMedCentralGoogle Scholar
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  25. Tribollet A (2008) The boring microflora in modern coral reef ecosystems: a review of its roles. Current developments in bioerosion. Springer, Berlin, Heidelberg, pp 67–94Google Scholar
  26. Velásquez J, Sánchez JA (2015) Octocoral species assembly and coexistence in Caribbean coral reefs. PLoS ONE 10:e0129609CrossRefPubMedPubMedCentralGoogle Scholar
  27. Verbruggen H, Tribollet A (2011) Boring algae. Curr Biol 21:R876–R877CrossRefPubMedGoogle Scholar
  28. Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ciencias Biológicas (Biommar), Facultad de CienciasUniversidad de los AndesBogotáColombia

Personalised recommendations