Coral Reefs

, Volume 37, Issue 4, pp 967–984 | Cite as

An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea

  • Roberto ArrigoniEmail author
  • Davide Maggioni
  • Simone Montano
  • Bert W. Hoeksema
  • Davide Seveso
  • Tom Shlesinger
  • Tullia Isotta Terraneo
  • Matthew D. Tietbohl
  • Michael L. Berumen


Fire corals of the hydrocoral genus Millepora provide an important ecological role as framework builders of coral reefs in the Indo-Pacific and the Atlantic. Recent works have demonstrated the incongruence between molecular data and the traditional taxonomy of Millepora spp. based on overall skeleton growth form and pores. In an attempt to establish a reliable and standardized approach for defining species boundaries in Millepora, we focused on those from the Red Sea. In this region, three species are currently recognized: the fan-shaped branching M. dichotoma, the blade-like M. platyphylla, and the massive/encrusting M. exaesa. A total of 412 colonies were collected from six localities. Two mitochondrial marker genes (COI and 16S rDNA) were sequenced to obtain phylogeny reconstructions and haplotype networks. Eight morphological traits of pores and the nematocysts of both polyp and eumedusoid stages were measured to determine whether significant morphological differences occur among the three species. Both markers clearly resolved M. dichotoma, M. platyphylla, and M. exaesa as distinct, monophyletic lineages in the Red Sea. Nevertheless, they also revealed deep genetic breaks with Southwestern Indian Ocean populations of the three species. In the Red Sea, the three species were further distinguished based on their pore and nematocyst features. A discriminant analysis revealed dactylopore density, number of dactylopores per gastropore, dactylopore distance, and gastropore diameter as the most informative discriminative characters. The heteronemes, the large and small stenoteles of polyps, and the distribution of mastigophores of eumedusoids also showed significant interspecific differences. An integrated morpho-molecular approach proved to be decisive in defining species boundaries of Millepora supported by a combination of pore and nematocyst characters, which may be phylogenetically informative.


Fire corals Phylogeny Pore Nematocyst Eumedusoid 



This research was undertaken in accordance with the policies and procedures of the King Abdullah University of Science and Technology (KAUST). Permissions relevant for KAUST to undertake the research have been obtained from the applicable governmental agencies in the Kingdom of Saudi Arabia. We wish to thank Amr Gusti (KAUST), the captain and crew of the MV Dream-Master and the KAUST Coastal and Marine Resources Core Laboratory for fieldwork logistics in the Red Sea. This project was supported by funding from KAUST (award #FCC/1/1973-21 and baseline research funds to MLB). TS would like to acknowledge Yossi Loya and the Israeli Taxonomy Initiative for funding his work. We are deeply grateful to the editor and three anonymous referees for their comments which greatly improved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

338_2018_1739_MOESM1_ESM.pdf (74 kb)
Fig. S1 a COI and b 16S rDNA phylogeny reconstructions of Millepora inferred by Bayesian inference. The two trees are identical to the ones presented in Fig. 4 but the graphics are different: Each single tip represents a single sequence. The clade support values are Bayesian posterior probabilities (≥ 0.7) and maximum likelihood bootstrap replicates (≥ 70). Colors denote each distinct molecular lineage as reported in the figure box (PDF 73 kb)
338_2018_1739_MOESM2_ESM.xlsx (241 kb)
Table S1 List of Millepora samples collected from the Red Sea for this study, including voucher number, depth, site, latitude, longitude, GenBank accession numbers of the two mitochondrial genes (COI and 16S rDNA) (XLSX 240 kb)
338_2018_1739_MOESM3_ESM.xlsx (69 kb)
Table S2 Measurements of pore characters analyzed in this study for the three Red Sea Millepora species (XLSX 69 kb)
338_2018_1739_MOESM4_ESM.xlsx (57 kb)
Table S3 Measurements of nematocyst characters of both polyp and medusa stages analyzed in this study for the three Red Sea Millepora species (XLSX 57 kb)
338_2018_1739_MOESM5_ESM.docx (12 kb)
Table S4 Wilks’ lambda test for verifying differences among Millepora species with pore character measurements using the DFA (DOCX 12 kb)


  1. Ahti PA, Coleman RR, DiBattista JD, Berumen ML, Rocha LA, Bowen BW (2016) Phylogeography of Indo-Pacific reef fishes: sister wrasses Coris gaimard and C. cuvieri in the Red Sea, Indian Ocean and Pacific Ocean. J Biogeogr 43:1103–1115CrossRefGoogle Scholar
  2. Amaral FD, Silva RS, Mauricio-da-Silva L, Sole-Cava AM (1997) Molecular systematics of Millepora alcicornis Linnaeus, 1758 and M. braziliensis Verrill, 1868 (Hydrozoa: Milleporidae) from Brazil. Proc 8th Int Coral Reef Symp 2:1577–1580Google Scholar
  3. Amaral FD, Steiner AQ, Broadhurst MK, Cairns SD (2008) An overview of the shallow-water calcified hydroids from Brazil (Hydrozoa: Cnidaria), including the description of a new species. Zootaxa 1930:56–68CrossRefGoogle Scholar
  4. Arrigoni R, Stefani F, Pichon M, Galli P, Benzoni F (2012) Molecular phylogeny of the robust clade (Faviidae, Mussidae, Merulinidae, and Pectiniidae): an Indian Ocean perspective. Mol Phylogenet Evol 65:183–193CrossRefPubMedGoogle Scholar
  5. Arrigoni R, Berumen ML, Chen CA, Terraneo TI, Baird AH, Payri C, Benzoni F (2016a) Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species. Mol Phylogenet Evol 105:146–159CrossRefPubMedGoogle Scholar
  6. Arrigoni R, Benzoni F, Huang D, Fukami H, Chen CA, Berumen ML, Hoogenboom M, Thomson DP, Hoeksema BW, Budd AF, Zayasu Y, Terraneo TI, Kitano YF, Baird AH (2016b) When forms meet genes: revision of the scleractinian genera Micromussa and Homophyllia (Lobophylliidae) with a description of two new species and one new genus. Contrib Zool 85:387–422CrossRefGoogle Scholar
  7. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  8. Benayahu Y, Loya Y (1977) Space partitioning by stony corals soft corals and benthic algae on the coral reefs of the northern Gulf of Eilat (Red Sea). Helgol Wiss Meeresunters 30:362CrossRefGoogle Scholar
  9. Boschma H (1948a) The species problem in Millepora. Zool Verh Leiden 1:1–115Google Scholar
  10. Boschma H (1948b) Specific characters in Millepora. Proc Kon Ned Akad Wet 51:818–823Google Scholar
  11. Boschma H (1949) The ampullae of Millepora. Proc Kon Ned Akad Wet 52:3–14Google Scholar
  12. Boschma H (1956) Milleporina and Stylasterina. In: Moore RC (ed) Treatise on invertebrate paleontology. Part F, Coelenterata. Geological Society of America & University of Kansas PressGoogle Scholar
  13. Boschma H (1966) On a new species of Millepora from Mauritius, with notes on the specific characters of Millepora exaesa. Proc Kon Ned Akad Wet 69:409–419Google Scholar
  14. Bouillon J, Gravili C, Gili J-M, Boero F (2006) An introduction to Hydrozoa. Ann Mus Hist Nat Paris 194:1–591Google Scholar
  15. Bourmaud CAF, Leung JKL, Bollard S, Gravier-Bonnet N (2013) Mass spawning events, seasonality and reproductive features in Milleporids (Cnidaria, Hydrozoa) from Reunion Island. Mar Ecol 34:1424CrossRefGoogle Scholar
  16. Bronstein O, Kroh A, Haring E (2016) Do genes lie? Mitochondrial capture masks the Red Sea collector urchin’s true identity (Echinodermata: Echinoidea: Tripneustes). Mol Phylogenet Evol 104:1–13CrossRefPubMedGoogle Scholar
  17. Cairns SD, Hoeksema BW, Van der land J (1999) List of extant stony corals. Atoll Res Bull 459:1–46CrossRefGoogle Scholar
  18. Calder DR (1988) Shallow-water hydroids of Bermuda: the Athecatae. R Ontario Mus Life Sci Contrib 148:1–107Google Scholar
  19. Crossland C (1941) On Forskål’s collection of corals in the Zoological Museum of Copenhagen. Spolia ZooL Haun. Skr Vdgivet Univ Zool Mus Kbh 1:5–63, pls 1–12Google Scholar
  20. Crossland C (1948) Reef corals of the South African Coast. Ann Nat Mus 9:169–205, pls 1–14Google Scholar
  21. Cunningham CW, Buss LW (1993) Molecular evidence for multiple episodes of paedomorphosis in the Family Hydractiniidae. Biochem Syst Ecol 21:57–69CrossRefGoogle Scholar
  22. de Souza JN, Nunes FL, Zilberberg C, Sanchez JA, Migotto AE, Hoeksema BW, Serrano XM, Baker AC, Lindner A (2017) Contrasting patterns of connectivity among endemic and widespread fire coral species (Millepora spp.) in the tropical Southwestern Atlantic. Coral Reefs 36:701–716CrossRefGoogle Scholar
  23. de Weerdt WH (1981) Transplantation experiments with Caribbean Millepora species (Hydrozoa, Coelenterata), including some ecological observations on growth forms. Bijdr Dierkd 51:1–19CrossRefGoogle Scholar
  24. de Weerdt WH (1984) Taxonomic characters in Caribbean Millepora species (Hydrozoa, Coelenterata) including some ecological observations on growth forms. Bijdr Dierkd 54:243–362CrossRefGoogle Scholar
  25. de Weerdt WH, Glynn PW (1991) A new and presumably now extinct species of Millepora (Hydrozoa) in the eastern Pacific. Zool Med Leiden 65:267–276Google Scholar
  26. DiBattista JD, Berumen ML, Gaither MR, Rocha LA, Eble JA, Choat JH, Craig MT, Skillings DJ, Bowen BW (2013) After continents divide: comparative phylogeography of reef fishes from the Red Sea and Indian Ocean. J Biogeogr 40:1170–1181CrossRefGoogle Scholar
  27. DiBattista JD, Choat JH, Gaither MR, Hobbs JP, Lozano-Cortés DF, Myers R, Paulay G, Rocha LA, Toonen RJ, Westneat M, Berumen ML (2016a) On the origin of endemic species in the Red Sea. J Biogeogr 43:13–30CrossRefGoogle Scholar
  28. DiBattista JD, Roberts MB, Bouwmeester J, Bowen BW, Coker DJ, Lozano-Cortés DF, Choat JH, Gaither MR, Hobbs JP, Khalil MT, Kochzius M, Myers RF, Paulay G, Robitzch V, Saenz-Agudelo P, Salas E, Sinclair-Taylor TH, Toonen RJ, Westneat MW, Williams ST, Berumen ML (2016b) A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. J Biogeogr 43:423–439CrossRefGoogle Scholar
  29. Dubé CE, Mercière A, Vermeij MJ, Planes S (2017a) Population structure of the hydrocoral Millepora platyphylla in habitats experiencing different flow regimes in Moorea. French Polynesia. PloS ONE 12:e0173513CrossRefPubMedGoogle Scholar
  30. Dubé CE, Boissin E, Maynard JA, Planes S (2017b) Fire coral clones demonstrate phenotypic plasticity among reef habitats. Mol Ecol 26:3860–3869CrossRefPubMedGoogle Scholar
  31. Dubé CE, Planes S, Zhou Y, Berteaux-Lecellier V, Boissin E (2017c) Genetic diversity and differentiation in reef-building Millepora species, as revealed by cross-species amplification of fifteen novel microsatellite loci. PeerJ 5:e2936CrossRefPubMedPubMedCentralGoogle Scholar
  32. Duchassaing P, Michelotti J (1860) Mémoire sur les Coralliaires des Antilles. Mém Ac Sc Turin Sér 2, 19:279–365, pls 1–10Google Scholar
  33. Edmunds PJ (1999) The role of colony morphology and substratum inclination in the success of Millepora alcicornis on shallow coral reefs. Coral Reefs 18:133–140CrossRefGoogle Scholar
  34. Ehrenberg CG (1834) Beitrage zur physiologischen Kenntniss der Corallenthiere im Allgemeinen und besunders des Rothen Meeres, nebst einem Versuche zur physiologischen Systematik derselben. Abh Kon Akad Wiss Berlin 1832:225–380Google Scholar
  35. Fernandez-Silva I, Randall JE, Coleman RR, DiBattista JD, Rocha LA, Reimer JD, Meyer CG, Bowen BW (2015) Yellow tails in the Red Sea: phylogeography of the Indo-Pacific goatfish Mulloidichthys flavolineatus reveals isolation in peripheral provinces and cryptic evolutionary lineages. J Biogeogr 42:2402–2413CrossRefGoogle Scholar
  36. Flot JF, Licuanan WY, Nakano Y, Payri C, Cruaud C, Tillier S (2008) Mitochondrial sequences of Seriatopora corals show little agreement with morphology and reveal the duplication of a tRNA gene near the control region. Coral Reefs 27:789–794CrossRefGoogle Scholar
  37. Forskål P (1775) Descriptiones animalium avium, amphibiorum, piscium, insectorum, vermium; quae in itinere orientali observavit. IV Corallia. Heineck et Faber, Hauniae, pp 131–139Google Scholar
  38. García-Arredondo A, Rojas A, Iglesias-Prieto R, Zepeda-Rodriguez A, Palma-Tirado L (2012) Structure of nematocysts isolated from the fire corals Millepora alcicornis and Millepora complanata (Cnidaria: Hydrozoa). J Venom Anim Toxins Incl Trop Dis 18:109–115CrossRefGoogle Scholar
  39. Gélin P, Postaire B, Fauvelot C, Magalon H (2017) Reevaluating species number, distribution and endemism of the coral genus Pocillopora Lamarck, 1816 using species delimitation methods and microsatellites. Mol Phylogenet Evol 109:430–446CrossRefPubMedGoogle Scholar
  40. Hickson SJ (1898) On the species of the genus Millepora: a preliminary communication. J Zool 66:246–257Google Scholar
  41. Hickson SJ (1809) Report on the specimens of the genus Millepora collected by Dr Willey. J Zool 119:661–672Google Scholar
  42. Hoeksema BW, Nunes FLD, Lindner A, de Souza JN (2017) Millepora alcicornis (Hydrozoa: Capitata) at Ascension Island: confirmed identity based on morphological and molecular analyses. J Mar Biol Assoc UK 97:709–712CrossRefGoogle Scholar
  43. Huang D, Benzoni F, Arrigoni R, Baird AH, Berumen ML, Bouwmeester J, Chou LM, Fukami H, Licuanan WY, Lovell ER, Meier R (2014) Towards a phylogenetic classification of reef corals: the Indo-Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae). Zool Scripta 43:531–548CrossRefGoogle Scholar
  44. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  45. Keith SA, Baird AH, Hughes TP, Madin JS, Connolly SR (2013) Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution. Proc R Soc B 280:20130818CrossRefPubMedGoogle Scholar
  46. Klausewitz W (1989) Evolutionary history and zoogeography of the Red Sea ichthyofauna. Fauna Saudi Arabia 10:310–337Google Scholar
  47. Klunzinger CB (1879) Die Korallthiere des Rothen Meeres. Gutmann, Berlin. 3:1–100Google Scholar
  48. Ladner JT, Palumbi SR (2012) Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes. Mol Ecol 21:2224–2238CrossRefPubMedGoogle Scholar
  49. Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701CrossRefPubMedGoogle Scholar
  50. Leprieur F, Descombes P, Gaboriau T, Cowman PF, Parravicini V, Kulbicki M, Melian CJ, de Santana CN, Heine C, Mouillot D, Bellwood DR, Pellissier L (2016) Plate tectonics drive tropical reef biodiversity dynamics. Nat Commun 7:11461CrossRefPubMedPubMedCentralGoogle Scholar
  51. Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, Boehm JT, Machida RJ (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool 10:34CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lewis JB (1989) The ecology of Millepora. Coral Reefs 8:99–107CrossRefGoogle Scholar
  53. Lewis JB (2006) Biology and ecology of the Millepora on coral reefs. Adv Mar Biol 50:1–55CrossRefPubMedGoogle Scholar
  54. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  55. Linnaeus C (1758) Systema Naturae, ed. X, vol. I. Laurentii Salvii, HolmiaeGoogle Scholar
  56. López C, Clemente S, Almeida C, Brito A, Hernandez M (2015) A genetic approach to the origin of Millepora sp. in the eastern Atlantic. Coral Reefs 34:631–638CrossRefGoogle Scholar
  57. Loya Y (1972) Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar Biol 13:100–123CrossRefGoogle Scholar
  58. Loya Y (1976) Recolonization of Red Sea corals affected by natural catastrophes and man-made perturbations. Ecology 57:278–289CrossRefGoogle Scholar
  59. Loya Y, Slobodkin LB (1971) The coral reefs of Eilat. Symp Zool Soc Lond 28:117–139Google Scholar
  60. Maggioni D, Galli P, Berumen ML, Arrigoni R, Seveso D, Montano S (2017a) Astrocoryne cabela, gen. nov. et sp. nov. (Hydrozoa: Sphaerocorynidae), a new sponge-associated hydrozoan. Invert Syst 31:734–746CrossRefGoogle Scholar
  61. Maggioni D, Montano S, Arrigoni R, Galli P, Puce S, Pica D, Berumen ML (2017b) Genetic diversity of the Acropora-associated hydrozoans: new insight from the Red Sea. Mar Biodivers 47:1045–1055CrossRefGoogle Scholar
  62. Maggioni D, Arrigoni R, Galli P, Berumen ML, Seveso D, Montano S (2018) Polyphyly of the genus Zanclea and family Zancleidae (Hydrozoa, Capitata) revealed by the integrative analysis of two bryozoan-associated species. Contrib Zool 87:87–104CrossRefGoogle Scholar
  63. Meroz-Fine E, Brickner I, Loya Y, Ilan M (2003) The hydrozoan coral Millepora dichotoma: speciation or phenotypic plasticity? Mar Biol 143:1175–1183CrossRefGoogle Scholar
  64. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, IEEEGoogle Scholar
  65. Montano S, Maggioni D, Galli P, Hoeksema BW (2017) A cryptic species in the Pteroclava krempfi species complex (Hydrozoa, Cladocorynidae) revealed in the Caribbean. Mar Biodivers 47:83–89CrossRefGoogle Scholar
  66. Moshchenko AV (1992) Morphology and variability of colonies of branched milleporids (Hydrozoa, Athecata, Milleporidae) from Vietnam. Zool Zhur 71:5–12Google Scholar
  67. Moshchenko AV (1994) Method of quantitative evaluation of the structure of the pore apparatus of millepore hydroids. Rus J Mar Biol 20:358–365Google Scholar
  68. Moshchenko AV (1995a) Environmental variations of the colony form of hydroid Millepora platyphylla in Vietnamese Reefs. Rus J Mar Biol 21:174–183Google Scholar
  69. Moshchenko AV (1995b) A quantitative evaluation of the structure of the pore apparatus of Millepora hydroids of Vietnam. Rus J Mar Biol 21:265–274Google Scholar
  70. Moshchenko AV (1996a) Growth and development of Millepora colonies (Athecata, Milleporidae). Zool Zhur 75:485–493Google Scholar
  71. Moshchenko AV (1996b) Variability of the pore apparatus of milleporine hydroids of Vietnam. Rus J Mar Biol 22:32–40Google Scholar
  72. Moshchenko AV (1997) On the species composition of millepores in the Indo-Pacific. Rus J Mar Biol 23:238–247Google Scholar
  73. Nawrocki AM, Schuchert P, Cartwright P (2010) Phylogenetics and evolution of Capitata (Cnidaria: Hydrozoa), and the systematics of Corynidae. Zool Scr 39:290–304CrossRefGoogle Scholar
  74. Perkol-Finkel S, Benayahu Y (2004) Community structure of stony and soft corals on vertical unplanned artificial reefs in Eilat (Red Sea): comparison to natural reefs. Coral Reefs 23:195–205CrossRefGoogle Scholar
  75. Pinzón JH, Sampayo E, Cox E, Chauka LJ, Chen CA, Voolstra CR, LaJeunesse TC (2013) Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J Biogeogr 40:1595–1608CrossRefGoogle Scholar
  76. Postaire B, Magalon H, Bourmaud CA, Bruggemann JH (2016) Molecular species delimitation methods and population genetics data reveal extensive lineage diversity and cryptic species in Aglaopheniidae (Hydrozoa). Mol Phylogenet Evol 105:36–49CrossRefPubMedGoogle Scholar
  77. Postaire B, Gélin P, Bruggemann JH, Pratlong M, Magalon H (2017) Population differentiation or species formation across the Indian and the Pacific Oceans? An example from the brooding marine hydrozoan Macrorhynchia phoenicea. Ecol Evol 7:8170–8186CrossRefPubMedPubMedCentralGoogle Scholar
  78. Pourtalès LF (1877) Effects of urticating organs of Millepora on the tongue. Nature 17:27CrossRefGoogle Scholar
  79. Quelch JJ (1884) The Milleporidae. Nature 30:539CrossRefGoogle Scholar
  80. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6.
  81. Rasband WS (1997) ImageJ.
  82. Razak TB, Hoeksema BW (2003) The hydrocoral genus Millepora (Hydrozoa: Capitata: Milleporidae) in Indonesia. Zool Verh Leiden 345:313–336Google Scholar
  83. Richards ZT, Berry O, van Oppen MJ (2016) Cryptic genetic divergence within threatened species of Acropora coral from the Indian and Pacific Oceans. Conserv Genet 17:577–591CrossRefGoogle Scholar
  84. Reijnen BT, McFadden CS, Hermanlimianto YT, van Ofwegen LP (2014) A molecular and morphological exploration of the generic boundaries in the family Melithaeidae (Coelenterata: Octocorallia) and its taxonomic consequences. Mol Phylogenet Evol 70:383–401CrossRefPubMedGoogle Scholar
  85. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Barget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  86. Ruiz-Ramos DV, Weil E, Schizas NV (2014) Morphological and genetic evaluation of the hydrocoral Millepora species complex in the Caribbean. Zool Stud 53:4CrossRefGoogle Scholar
  87. Schettino A, Turco E (2011) Tectonic history of the western Tethys since the Late Triassic. Geol Soc Am Bull 123:89–105CrossRefGoogle Scholar
  88. Schuchert P (2014) High genetic diversity in the hydroid Plumularia setacea: a multitude of cryptic species or extensive population subdivision? Mol Phylogenet Evol 76:1–9CrossRefPubMedGoogle Scholar
  89. Schweinsberg M, Tollrian R, Lampert KP (2016) Inter-and intra-colonial genotypic diversity in hermatypic hydrozoans of the family Milleporidae. Mar Ecol 38:e12388CrossRefGoogle Scholar
  90. Smith TB, Glynn PW, Maté JL, Toth LT, Gyory J (2014) A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95:1663–1673CrossRefPubMedGoogle Scholar
  91. Stamatakis A (2014) RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies”. Bioinformatics 30:1312–1313CrossRefPubMedPubMedCentralGoogle Scholar
  92. Takama O, Fernandez-Silva I, López C, Reimer JD (2018) Molecular phylogeny demonstrates the need for taxonomic reconsideration of species diversity of the hydrocoral genus Millepora (Cnidaria: Hydrozoa) in the Pacific. Zool Sci 35:123–133CrossRefPubMedGoogle Scholar
  93. Vago R, Achituv Y, Vaky L, Dubinsky Z, Kizner Z (1998) Colony architecture of Millepora dichotoma Forskal. J Exp Mar Biol Ecol 224:225–235CrossRefGoogle Scholar
  94. Waldrop E, Hobbs JP, Randall JE, DiBattista JD, Rocha LA, Kosaki RK, Berumen ML, Bowen BW (2016) Phylogeography, population structure and evolution of coral-eating butterflyfishes (Family Chaetodontidae, genus Chaetodon, subgenus Corallochaetodon). J Biogeogr 43:1116–1129CrossRefGoogle Scholar
  95. Wolf-Vecht A, Paldor N, Brenner S (1992) Hydrographic indications of advection/convection effects in the Gulf of Eilat. Deep Sea Research Part A. Oceanogr Res Pap 39:1393–1401Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Roberto Arrigoni
    • 1
    Email author
  • Davide Maggioni
    • 2
    • 3
  • Simone Montano
    • 2
    • 3
  • Bert W. Hoeksema
    • 4
  • Davide Seveso
    • 2
    • 3
  • Tom Shlesinger
    • 5
  • Tullia Isotta Terraneo
    • 1
    • 6
  • Matthew D. Tietbohl
    • 1
  • Michael L. Berumen
    • 1
  1. 1.Division of Biological and Environmental Science and Engineering, Red Sea Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.Dipartimento di Scienze dell’Ambiente e del Territorio (DISAT)Università degli Studi di Milano-BicoccaMilanItaly
  3. 3.Marine Research and High Education (MaRHE) CenterFaafu MagoodhooMaldives
  4. 4.Taxonomy and Systematics GroupNaturalis Biodiversity CenterLeidenThe Netherlands
  5. 5.School of Zoology, The George S. Wise Faculty of Life SciencesTel-Aviv UniversityTel-AvivIsrael
  6. 6.College of Marine and Environmental ScienceJames Cook UniversityTownsvilleAustralia

Personalised recommendations