Coral Reefs

, Volume 36, Issue 4, pp 1245–1252 | Cite as

Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea

  • Joseph D. DiBattistaEmail author
  • Darren J. Coker
  • Tane H. Sinclair-Taylor
  • Michael Stat
  • Michael L. Berumen
  • Michael Bunce


Relatively small volumes of water may contain sufficient environmental DNA (eDNA) to detect target aquatic organisms via genetic sequencing. We therefore assessed the utility of eDNA to document the diversity of coral reef fishes in the central Red Sea. DNA from seawater samples was extracted, amplified using fish-specific 16S mitochondrial DNA primers, and sequenced using a metabarcoding workflow. DNA sequences were assigned to taxa using available genetic repositories or custom genetic databases generated from reference fishes. Our approach revealed a diversity of conspicuous, cryptobenthic, and commercially relevant reef fish at the genus level, with select genera in the family Labridae over-represented. Our approach, however, failed to capture a significant fraction of the fish fauna known to inhabit the Red Sea, which we attribute to limited spatial sampling, amplification stochasticity, and an apparent lack of sequencing depth. Given an increase in fish species descriptions, completeness of taxonomic checklists, and improvement in species-level assignment with custom genetic databases as shown here, we suggest that the Red Sea region may be ideal for further testing of the eDNA approach.


Biodiversity Coral reef Environmental DNA Metabarcoding Next-generation sequencing 



This study was funded by KAUST Award No. CRG-1-2012-BER-002 and baseline research funds to M.L.B., as well as a Curtin University Early Career Research Fellowship to J.D.D., M.S., and M.B. acknowledge the support of ARC Linkage Project (LP160100839) to explore marine metabarcoding applications. The authors would also like to acknowledge KAUST’s Coastal and Marine Resources Core Lab for logistical support, as well as Matthew Power, Megan Coghlan, and Brendan Chapman for DNA sequencing assistance.

Supplementary material

338_2017_1618_MOESM1_ESM.docx (388 kb)
Supplementary material 1 (DOCX 388 kb)
338_2017_1618_MOESM2_ESM.docx (104 kb)
Supplementary material 2 (DOCX 105 kb)
338_2017_1618_MOESM3_ESM.docx (13 kb)
Supplementary material 3 (DOCX 13 kb)
338_2017_1618_MOESM4_ESM.fasta (1.5 mb)
Supplementary material 4 (FASTA 1533 kb)


  1. Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser 206:227–237CrossRefGoogle Scholar
  2. Berumen ML, Hoey AS, Bass WH, Bouwmeester J, Catania D, Cochran JEM, Khalil MT, Miyake S, Mughal MR, Spaet JLY, Saenz-Agudelo P (2013) The status of coral reef ecology research in the Red Sea. Coral Reefs 32:737–748CrossRefGoogle Scholar
  3. Deagle BE, Gales NJ, Evans K, Jarman SN, Robinson S, Trebilco R, Hindell MA (2007) Studying seabird diet through genetic analysis of faeces: a case study on macaroni penguins (Eudyptes chrysolophus). PLoS One 2:e831CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dejean T, Valentini A, Duparc A, Pellier-Cuit S, Pompanon F, Taberlet P, Miaud C (2011) Persistence of environmental DNA in freshwater ecosystems. PLoS One 6:e23398CrossRefPubMedPubMedCentralGoogle Scholar
  5. DiBattista JD, Berumen ML, Gaither MR, Rocha LA, Eble JA, Choat JH, Craig MT, Skillings DJ, Bowen BW (2013) After continents divide: comparative phylogeography of reef fishes from the Red Sea and Indian Ocean. J Biogeogr 40:1170–1181CrossRefGoogle Scholar
  6. DiBattista JD, Choat JH, Gaither MR, Hobbs JP, Lozano-Cortés DF, Myers RF, Paulay G, Rocha LA, Toonen RJ, Westneat M, Berumen ML (2016a) On the origin of endemic species in the Red Sea. J Biogeogr 43:13–30CrossRefGoogle Scholar
  7. DiBattista JD, Roberts M, Bouwmeester J, Bowen BW, Coker DF, Lozano-Cortés DF, Choat JH, Gaither MR, Hobbs JP, Khalil M, Kochzius M, Myers R, Paulay G, Robitzch V, Saenz-Agudelo P, Salas E, Sinclair-Taylor TH, Toonen RJ, Westneat M, Williams S, Berumen ML (2016b) A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. J Biogeogr 43:423–439CrossRefGoogle Scholar
  8. DiBattista JD, Bowen BW, Gaither MR, Hobbs J-PA, Saenz-Agudelo P, Piatek M, Rocha LA, Choat JH, McIlwain J, Priest MA, Sinclair-Taylor TH, Berumen ML (2017) Comparative phylogeography of reef fishes from the Gulf of Aden to the Arabian Sea reveals two cryptic lineages. Coral Reefs 36:625–638CrossRefGoogle Scholar
  9. Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2009) Geneious v 4.8.
  10. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefPubMedGoogle Scholar
  11. Harvey ES, Newman SJ, McLean DL, Cappo M, Meeuwig JJ, Skepper CL (2012) Comparison of the relative efficiencies of stereo-BRUVs and traps for sampling tropical continental shelf demersal fishes. Fish Res 125:108–120CrossRefGoogle Scholar
  12. Huson DH, Weber N (2013) Microbial community analysis using MEGAN. Methods Enzymol 531:465–485CrossRefPubMedGoogle Scholar
  13. Lacoursière-Roussel A, Côté G, Leclerc V, Bernatchez L (2016) Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. J Appl Ecol 53:1148–1157CrossRefGoogle Scholar
  14. Leray M, Knowlton N (2015) DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc Natl Acad Sci U S A 112:2076–2081CrossRefPubMedPubMedCentralGoogle Scholar
  15. Mahon AR, Jerde CL, Galaska M, Bergner JL, Chadderton WL, Lodge DM, Hunter ME, Nico LG (2013) Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PLoS One 8:e58316CrossRefPubMedPubMedCentralGoogle Scholar
  16. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422CrossRefPubMedPubMedCentralGoogle Scholar
  17. Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, Minamoto T, Yamamoto S, Yamanaka H, Araki H, Kondoh M (2015) MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R Soc Open Sci 2:150088CrossRefPubMedPubMedCentralGoogle Scholar
  18. Murray DC, Coghlan ML, Bunce M (2015) From benchtop to desktop: important considerations when designing amplicon sequencing workflows. PLoS One 10:e0124671CrossRefPubMedPubMedCentralGoogle Scholar
  19. Pilliod DS, Goldberg CS, Arkle RS, Waits LP (2013) Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can J Fish Aquat Sci 70:1123–1130CrossRefGoogle Scholar
  20. Pleijel F, Jondelius U, Norlinder E, Nygren A, Oxelman B, Schander C, Sundberg P, Thollesson M (2008) Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Mol Phylogenet Evol 48:369–371CrossRefPubMedGoogle Scholar
  21. Raitsos DE, Pradhan Y, Brewin RJ, Stenchikov G, Hoteit I (2013) Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS One 8:e64909CrossRefPubMedPubMedCentralGoogle Scholar
  22. Roberts CM, Shepherd ARD, Ormond RF (1992) Large-scale variation in assemblage structure of Red Sea butterflyfishes and angelfishes. J Biogeogr 1992:239–250CrossRefGoogle Scholar
  23. Roberts MB, Jones GP, McCormick MI, Munday PL, Neale S, Thorrold S, Robitzch VS, Berumen ML (2016) Homogeneity of coral reef communities across 8 degrees of latitude in the Saudi Arabian Red Sea. Mar Pollut Bull 105:558–565CrossRefPubMedGoogle Scholar
  24. Spalding MD, Ravilious C, Green EP (2001) World atlas of coral reefs. University of California Press, BerkeleyGoogle Scholar
  25. Thomsen PF, Kielgest J, Iversen LL, Møller PR, Rasmussen M, Willerslev E (2012) Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS One 7:e41732CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Trace and Environmental DNA Laboratory, Department of Environment and AgricultureCurtin UniversityPerthAustralia
  2. 2.Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations