Coral Reefs

, Volume 36, Issue 3, pp 773–784 | Cite as

Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium

  • Karen D. Weynberg
  • Matthew Neave
  • Peta L. Clode
  • Christian R. Voolstra
  • Christopher Brownlee
  • Patrick Laffy
  • Nicole S. Webster
  • Rachel A. Levin
  • Elisha M. Wood-Charlson
  • Madeleine J. H. van Oppen


Reef corals are under threat from bleaching and disease outbreaks that target both the host animal and the algal symbionts within the coral holobiont. A viral origin for coral bleaching has been hypothesized, but direct evidence has remained elusive. Using a multifaceted approach incorporating flow cytometry, transmission electron microscopy, DNA and RNA virome sequencing, we show that type C1 Symbiodinium cultures host a nucleocytoplasmic large double-stranded DNA virus (NCLDV) related to Phycodnaviridae and Mimiviridae, a novel filamentous virus of unknown phylogenetic affiliation, and a single-stranded RNA virus related to retroviruses. We discuss implications of these findings for laboratory-based experiments using Symbiodinium cultures.


Viruses Symbiodinium Symbiosis Dinoflagellate cultures Coral bleaching Scleractinia 



We acknowledge the technical support from Victor Beltran at the AIMS Symbiont Culture Facility and the scientific and technical assistance of the Australian Microscopy and Microanalysis Research Facility (AMMRF) at the Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, a facility funded by the University and the Western Australian and Australian governments. We acknowledge funding from the Australian Research Council SuperScience Fellowship #FS110200034 to K.D.W. and Future Fellowships #FT100100088 and #FT120100480 to M.v.O and N.S.W., respectively. Research reported in this publication was supported by King Abdullah University of Science and Technology.

Supplementary material

338_2017_1568_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (DOCX 27 kb)


  1. Angly FE, Willner D, Prieto-Davo A, Edwards RA, Schmieder R, Vega Thurber R, Antonopoulos DA, Barott K, Cottrell MT, Desnues C, Dinsdale EA, Furlan M, Haynes M, Henn MR, Hu YF, Kirchman DL, McDole T, McPherson JD, Meyer F, Miller RM, Mundt E, Naviaux RK, Rodriguez-Mueller B, Stevens R, Wegley L, Zhang LX, Zhu BL, Rohwer F (2009) The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes. Plos Comp Biol 5:e1000593CrossRefGoogle Scholar
  2. Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20CrossRefPubMedGoogle Scholar
  3. Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471CrossRefGoogle Scholar
  4. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesi VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bidle KD, Vardi A (2011) A chemical arms race at sea mediates algal host–virus interactions. Curr Opin Microbiol 14:449–457CrossRefPubMedGoogle Scholar
  6. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138CrossRefGoogle Scholar
  8. Brussaard CPD (2004) Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol 70:1506–1513CrossRefPubMedPubMedCentralGoogle Scholar
  9. Correa AMS, Welsh RM, Vega Thurber RL (2012) Unique nucleocytoplasmic dsDNA and +ssRNA viruses are associated with the dinoflagellate endosymbionts of corals. ISME J 7:13–27CrossRefPubMedPubMedCentralGoogle Scholar
  10. Correa AMS, Ainsworth TD, Rosales SM, Thurber AR, Butler CR, Vega Thurber RL (2016) Viral outbreak in corals associated with an in situ bleaching event: atypical herpes-like viruses and a new megavirus infecting Symbiodinium. Front Microbiol 7:127CrossRefPubMedPubMedCentralGoogle Scholar
  11. Culley AI, Suttle CA, Steward GF (2010) Characterization of the diversity of marine RNA viruses. In: Wilhelm SW, Weinbauer MG, Suttle CA (eds) Manual of aquatic viral ecology. American Society of Limnology and Oceanography Waco, TXGoogle Scholar
  12. Culley AI, Mueller JA, Belcaid M, Wood-Charlson EM, Poisson G, Steward GF (2014) The characterization of RNA viruses in tropical seawater using targeted PCR and metagenomics. mBio 5:e01210-14Google Scholar
  13. Davy JE, Patten NL (2007) Morphological diversity of virus-like particles within the surface microlayer of scleractinian corals. Aquat Microb Ecol 47:37–44CrossRefGoogle Scholar
  14. Davy SK, Burchett SG, Dale AL, Davies P, Davy JE, Muncke C, Hoegh-Guldberg O, Wilson WH (2006) Viruses: agents of coral disease? Dis Aquat Organ 69:101–110CrossRefPubMedGoogle Scholar
  15. Downs CA, McDougall KE, Woodley CM, Fauth JE, Richmond RH, Kushmaro A, Gibb SW, Loya Y, Ostrander K, Kramarsky-Winter E (2013) Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS One 8:e77173CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dunlap WC, Starcevic A, Baranasic D, Diminic J, Zucko J, Gacesa R, van Oppen MJH, Hranueli D, Cullum J, Long PF (2013) KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase — an open access and searchable database of a coral genome. BMC Genomics 14:509CrossRefPubMedPubMedCentralGoogle Scholar
  17. Eakin CM, Lough JM, Heron SF (2009) Climate variability and change: monitoring data and evidence for increased coral bleaching stress. In: van Oppen MH, Lough JM (eds) coral bleaching. Springer, Berlin, HeidelbergGoogle Scholar
  18. Evans C, Malin G, Mills GP, Wilson WH (2006) Viral infection of Emiliania huxleyi (Prymnesiophyceae) leads to elevated production of reactive oxygen species. J Phycol 42:1040–1047CrossRefGoogle Scholar
  19. Ferrier-Pagès C, Richard C, Forcioli D, Allemand D, Pichon M, Shick JM (2007) Effects of temperature and UV radiation increases on the photosynthetic efficiency in four scleractinian coral species. Biol Bull 213:76–87CrossRefPubMedGoogle Scholar
  20. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866CrossRefGoogle Scholar
  21. Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH (2012) Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Chang 2:116–120CrossRefGoogle Scholar
  22. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119CrossRefPubMedPubMedCentralGoogle Scholar
  23. Iyer LM, Aravind L, Koonin EV (2001) Common origin of four diverse families of large eukaryotic DNA viruses. J Virol 75:11720–11734CrossRefPubMedPubMedCentralGoogle Scholar
  24. Iyer LM, Balaji S, Koonin EV, Aravind L (2006) Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 117:156–184CrossRefPubMedGoogle Scholar
  25. Kim FJ, Battini J-L, Manel N, Sitbon M (2004) Emergence of vertebrate retroviruses and envelope capture. Virology 318:183–191CrossRefPubMedGoogle Scholar
  26. King A, Adams M, Carstens E, Lefkowitz E (2011) Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, San DiegoGoogle Scholar
  27. Laffy PW, Wood-Charlson EM, Turaev D, Weynberg KD, Botté ES, van Oppen MJH, Webster NS, Rattei T (2016) HoloVir: a workflow for investigating the diversity and function of viruses in invertebrate holobionts. Front Microbiol 7:822CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lang AS, Rise ML, Culley AI, Steward GF (2009) RNA viruses in the sea. FEMS Microbiol Rev 33:295–323CrossRefPubMedGoogle Scholar
  29. Lawrence SA, Wilson WH, Davy JE, Davy SK (2014) Latent virus-like infections are present in a diverse range of Symbiodinium spp. (Dinophyta). J Phycol 50:977–997CrossRefGoogle Scholar
  30. Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23:367–377CrossRefGoogle Scholar
  31. Levin RA, Voolstra CR, Weynberg KD, van Oppen MJH (2016) Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J 11:808–812CrossRefPubMedGoogle Scholar
  32. Lohr J, Munn CB, Wilson WH (2007) Characterization of a latent virus-like infection of symbiotic zooxanthellae. Appl Environ Microbiol 73:2976–2981CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mokili JL, Rohwer F, Dutilh BE (2012) Metagenomics and future perspectives in virus discovery. Curr Opin Virol 2:63–77CrossRefPubMedGoogle Scholar
  34. Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 27:454–460CrossRefGoogle Scholar
  35. Onji M, Nakano S-I, Suzuki S (2003) Virus-like particles suppress growth of the red-tide-forming marine dinoflagellate Gymnodinium mikimotoi. Mar Biotech 5:435–442CrossRefGoogle Scholar
  36. Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral- associated bacteria. Mar Ecol Prog Ser 243:1–10CrossRefGoogle Scholar
  37. Rosenberg E, Kushmaro A (2011) Microbial diseases of corals: pathology and ecology. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, DordrechtGoogle Scholar
  38. Rosenberg E, Kushmaro A, Kramarsky-Winter E, Banin E, Yossi L (2009) The role of microorganisms in coral bleaching. ISME J 3:139–146CrossRefPubMedGoogle Scholar
  39. Roux S, Tournayre J, Mahul A, Debroas D, Enault F (2014) Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC Bioinformatics 15:76CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sawyer SJ, Muscatine L (2001) Cellular mechanisms underlying temperature-induced bleaching in the tropical sea anemone Aiptasia pulchella. J Exp Biol 204:3443–3456PubMedGoogle Scholar
  41. Steward GF, Culley AI, Mueller JA, Wood-Charlson EM, Belcaid M, Poisson G (2013) Are we missing half of the viruses in the ocean? ISME J 7:672–679CrossRefPubMedGoogle Scholar
  42. Tarutani K, Nagasaki K, Itakura S, Yamaguchi M (2001) Isolation of a virus infecting the novel shellfish-killing dinoflagellate Heterocapsa circularisquama. Aquat Microb Ecol 23:103–111CrossRefGoogle Scholar
  43. Thomas V, Bertelli C, Collyn F, Casson N, Telenti A, Goesmann A, Croxatto A, Greub G (2011) Lausannevirus, a giant amoebal virus encoding histone doublets. Environ Microbiol 13:1454–1466CrossRefPubMedGoogle Scholar
  44. Tomaru Y, Katanozaka N, Nishida K, Shirai Y, Tarutani K, Yamaguchi M, Nagasaki K (2004) Isolation and characterization of two distinct types of HcRNAV, a single-stranded RNA virus infecting the bivalve-killing microalga Heterocapsa circularisquama. Aquat Microb Ecol 34:207–218CrossRefGoogle Scholar
  45. Walsh D, Mohr I (2011) Viral subversion of the host protein synthesis machinery. Nat Rev Micro 9:860–875CrossRefGoogle Scholar
  46. Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066CrossRefPubMedGoogle Scholar
  47. Weston AJ, Dunlap WC, Shick JM, Klueter A, Iglic K, Vukelic A, Starcevic A, Ward M, Wells ML, Trick CG, Long PF (2012) A profile of an endosymbiont-enriched fraction of the coral Stylophora pistillata reveals proteins relevant to microbial-host interactions. Mol Cell Proteomics 11(M111):015487PubMedGoogle Scholar
  48. Weynberg KD, Allen MJ, Ashelford K, Scanlan DJ, Wilson WH (2009) From small hosts come big viruses: the complete genome of a second Ostreococcus tauri virus, OtV-1. Environ Microbiol 11:2821–2839CrossRefPubMedGoogle Scholar
  49. Weynberg KD, Wood-Charlson EM, Suttle CA, van Oppen MJH (2014) Generating viral metagenomes from the coral holobiont. Front Microbiol 5:206CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wilson WH, Francis I, Ryan K, Davy SK (2001) Temperature induction of viruses in symbiotic dinoflagellates. Aquat Microb Ecol 25:99–102CrossRefGoogle Scholar
  51. Wilson WH, Dale AL, Davy JE, Davy SK (2005a) An enemy within? Observations of virus-like particles in reef corals. Coral Reefs 24:145–148CrossRefGoogle Scholar
  52. Wilson WH, Schroeder DC, Allen MJ, Holden MTG, Parkhill J, Barrell BG, Churcher C, Hamlin N, Mungall K, Norbertczak H, Quail MA, Price C, Rabbinowitsch E, Walker D, Craigon M, Roy D, Ghazal P (2005b) Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science 309:1090–1092CrossRefPubMedGoogle Scholar
  53. Wood-Charlson EM, Weynberg KD, Suttle CA, Roux S, van Oppen MJH (2015) Metagenomic characterization of viral communities in corals: mining biological signal from methodological noise. Environ Microbiol 17:3440–3449CrossRefPubMedGoogle Scholar
  54. Yutin N, Koonin EV (2012) Hidden evolutionary complexity of nucleo-cytoplasmic large DNA viruses of eukaryotes. Virol J 9:161CrossRefPubMedPubMedCentralGoogle Scholar
  55. Yutin N, Wolf YI, Raoult D, Koonin EV (2009) Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol J 6:223CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Karen D. Weynberg
    • 1
  • Matthew Neave
    • 2
  • Peta L. Clode
    • 3
    • 4
  • Christian R. Voolstra
    • 2
  • Christopher Brownlee
    • 5
  • Patrick Laffy
    • 1
  • Nicole S. Webster
    • 1
  • Rachel A. Levin
    • 6
    • 7
  • Elisha M. Wood-Charlson
    • 1
    • 9
  • Madeleine J. H. van Oppen
    • 1
    • 8
  1. 1.Australian Institute of Marine ScienceTownsvilleAustralia
  2. 2.Division of Biological and Environmental Science and Engineering, Red Sea Research CenterKing Abdullah University of Science and TechnologyJeddahSaudi Arabia
  3. 3.Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaPerthAustralia
  4. 4.The Oceans InstituteThe University of Western AustraliaPerthAustralia
  5. 5.Biological Resources Imaging LaboratoryUniversity of New South WalesSydneyAustralia
  6. 6.Centre for Marine Bio-InnovationThe University of New South WalesSydneyAustralia
  7. 7.Plant Functional Biology and Climate Change ClusterUniversity of Technology SydneySydneyAustralia
  8. 8.School of BioSciencesThe University of MelbourneParkville, MelbourneAustralia
  9. 9.Center for Microbial Oceanography: Research and EducationUniversity of Hawai‘i at MānoaHonoluluUSA

Personalised recommendations