Coral Reefs

, Volume 35, Issue 3, pp 999–1009 | Cite as

Response of herbivore functional groups to sequential perturbations in Moorea, French Polynesia

  • Xueying Han
  • Thomas C. Adam
  • Russell J. Schmitt
  • Andrew J. Brooks
  • Sally J. Holbrook


The reefs surrounding the island of Moorea, French Polynesia, experienced two large pulse perturbations between 2008 and 2010, an outbreak of the crown-of-thorns seastar (Acanthaster planci) followed by a cyclone, that resulted in the reduction in live coral cover on the fore reef from ~40 to <5 %. Live coral cover in back reef and fringing reef habitats initially remained relatively stable, but began a gradual decline around 2010. We assessed the changes in the functional composition of the herbivorous fish community following the pulse perturbations and during the time of gradual coral decline on the back reef and fringing reef. Forty-nine species of herbivorous fishes quantified in yearly surveys between 2006 and 2014 were assigned to six functional groups: browser, detritivore, excavator, farmer, grazer/detritivore, and scraper. Non-metric multidimensional scaling analyses revealed that despite unique functional assemblages initially existing among the fringing reef, back reef, and fore reef habitats, the herbivorous fish communities in all three habitats responded in a qualitatively similar fashion to coral decline by moving toward functional communities characterized by an increased representation of excavators and scrapers. Island-wide scraper biomass increased by ~sevenfold in the post-disturbance time period, while excavator biomass increased by nearly threefold. The biomass of detritivores and grazers/detritivores also increased over the same time period, but to a much lesser degree, while the biomass of browsers and farmers remained essentially unchanged. Macroalgae remained a relatively minor space holder (<10 % cover) in lagoon habitats and on the fore reef through 2014, enabling recruitment of juvenile coral and initiating coral recovery on the fore reef. Results suggest that a functional community with a substantial biomass of herbivores and the capacity for the biomass of scrapers and excavators to increase rapidly in response to landscape-scale declines in coral cover may enhance resilience by preventing the widespread establishment of macroalgae.


Coral reef fish Ecological resilience Herbivore responses Control of macroalgae 

Supplementary material

338_2016_1423_MOESM1_ESM.docx (795 kb)
Supplementary material 1 (DOCX 795 kb)


  1. Adam TC, Brooks AJ, Holbrook SJ, Schmitt RJ, Washburn L, Bernardi G (2014) How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations. Oecologia 176:285–296CrossRefPubMedGoogle Scholar
  2. Adam TC, Schmitt RJ, Holbrook SJ, Brooks AJ, Edmunds PJ, Carpenter RC, Bernardi G (2011) Herbivory, connectivity, and ecosystem resilience: response of a coral reef to a large-scale perturbation. PloS One 6:e23717CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adjeroud M, Michonneau F, Edmunds PJ, Chancerelle Y, Lison de Loma T, Penin L, Thibaut L, Vidal-Dupiol J, Salvat B, Galzin R (2009) Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a south Central Pacific reef. Coral Reefs 28:775–780CrossRefGoogle Scholar
  4. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci U S A 105:17442–17446CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beldade R, Holbrook SJ, Schmitt RJ, Planes S, Malone D, Bernardi G (2012) Larger female fish contribute disproportionately more to self-replenishment. Proc R Soc Lond B Biol Sci 279:2116–2121CrossRefGoogle Scholar
  6. Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833CrossRefPubMedGoogle Scholar
  7. Brooks AJ (2014) MCR LTER: Reference: Fish taxonomy, trophic groups and morphometry. Dataset knb-lter-mcr.6001.4
  8. Brooks AJ (2015a) MCR LTER: Coral reef: Long-term population and community dynamics: fishes. Dataset knb-lter-mcr.6.48
  9. Brooks AJ (2015b) MCR LTER: Coral reef: Long-term population and community dynamics: Acanthaster planci, ongoing since 2005. Dataset knb-lter-mcr.1039
  10. Burkepile DE, Hay ME (2008) Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc Natl Acad Sci U S A 105:16201–16206CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ceccarelli DM, Jones GP, McCook LJ (2001) Territorial damselfishes as determinants of the structure of benthic communities on coral reefs. Oceanogr Mar Biol Annu Rev 29:355–389Google Scholar
  12. Cheal AJ, Emslie M, Aaron MM, Miller I, Sweatman H (2013) Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecol Appl 23:174–188CrossRefPubMedGoogle Scholar
  13. Cheal AJ, MacNeil MA, Cripps E, Emslie MJ, Jonker M, Schaffelke B, Sweatman H (2010) Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29:1005–1015CrossRefGoogle Scholar
  14. Choat JH, Robertson DR (2001) Age-based studies on coral reef fishes. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego CA, USA, pp 57–80Google Scholar
  15. Diaz-Pulido G, McCook L (2002) The fate of bleached corals: patterns and dynamics of algal recruitment. Mar Ecol Prog Ser 232:115–128CrossRefGoogle Scholar
  16. Done TJ, Dayton PK, Dayton AE, Steger R (1991) Regional and local variability in recovery of shallow coral communities: Moorea, French Polynesia and central Great Barrier Reef. Coral Reefs 9:183–192CrossRefGoogle Scholar
  17. Edmunds P (2014) MCR LTER: Coral reef: Long-term community dynamics: backreef (lagoon) corals annual survey, ongoing since 2005. Dataset knb-lter-mcr.1038.3
  18. Edwards CB, Friedlander AM, Green AG, Hardt MJ, Sala E, Sweatman HP, Williams ID, Zgliczynski B, Sandin SA, Smith JE (2014) Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc R Soc Lond B Biol Sci 281:20131835CrossRefGoogle Scholar
  19. Fox RJ, Bellwood DR (2007) Quantifying herbivory across a coral reef depth gradient. Mar Ecol Prog Ser 339:49–59CrossRefGoogle Scholar
  20. Garpe K, Yahya S, Lindahl U, Öhman M (2006) Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Mar Ecol Prog Ser 315:237–247CrossRefGoogle Scholar
  21. Gilmour JP, Smith LD, Heyward AJ, Baird AH, Pratchett MS (2013) Recovery of an isolated coral reef system following severe disturbance. Science 340:69–71CrossRefPubMedGoogle Scholar
  22. Gleason MG (1996) Coral recruitment in Moorea, French Polynesia: the importance of patch type and temporal variation. J Exp Mar Bio Ecol 207:79–101CrossRefGoogle Scholar
  23. Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Bijoux JP, Robinson J (2006) Dynamic fragility of oceanic coral reef ecosystems. Proc Natl Acad Sci U S A 103:8425–8429CrossRefPubMedPubMedCentralGoogle Scholar
  24. Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Robinson J, Bijoux JP, Daw TM (2007) Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv Biol 21:1291–1300CrossRefPubMedGoogle Scholar
  25. Green AL, Bellwood DR (2009) Monitoring functional groups of herbivorous reef fishes as indicators of coral reef resilience. A practical guide for coral reef managers in the Asia Pacific Region. IUCN Working Group on Climate Change and Coral Reefs. IUCN, Gland, Switzerland. 70 ppGoogle Scholar
  26. Halford A, Cheal AJ, Ryan D, Williams D (2004) Resilience to large-scale disturbance in coral and fish assemblages on the Great Barrier Reef. Ecology 85:1892–1905CrossRefGoogle Scholar
  27. Hart AM, Klump DW, Russ GR (1996) Response of herbivorous fishes to crown-of-thorns starfish Acanthaster planci outbreaks. II. Density and biomass of selected species of herbivorous fish and fish-habitat correlations. Mar Ecol Prog Ser 132:21–30CrossRefGoogle Scholar
  28. Hata H, Umezawa Y (2011) Food habits of the farmer damselfish Stegastes nigricans inferred by stomach content, stable isotope, and fatty acid composition analyses. Ecol Res 26:809–818CrossRefGoogle Scholar
  29. Hawkins JP, Roberts CM, Dytham C, Schelten C, Nugues MM (2006) Effects of habitat characteristics and sedimentation on performance of marine reserves in St. Lucia. Biol Conserv 127:487–499CrossRefGoogle Scholar
  30. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  31. Hoey AS, Bellwood DR (2009) Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12:1316–1328CrossRefGoogle Scholar
  32. Holbrook SJ, Schmitt RJ, Brooks AJ (2008) Resistance and resilience of a coral reef fish community to changes in coral cover. Mar Ecol Prog Ser 371:263–271CrossRefGoogle Scholar
  33. Holbrook SJ, Schmitt RJ, Messmer V, Brooks AJ, Srinivasan M, Munday PL, Jones GP (2015) Reef fishes in biodiversity hotspots are at greater risk from loss of coral species. PLoS One 10:e0124054CrossRefPubMedCentralGoogle Scholar
  34. Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365CrossRefPubMedGoogle Scholar
  35. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933CrossRefPubMedGoogle Scholar
  36. Johnson MK, Holbrook SJ, Schmitt RJ, Brooks AJ (2011) Fish communities on staghorn coral: effects of habitat characteristics and resident farmerfishes. Env Biol Fish 91:429–448CrossRefGoogle Scholar
  37. Kayal M, Vercelloni J, Lison de Loma T, Bosserelle P, Chancerelle Y, Geoffroy S, Stievenart C, Michonneau F, Penin L, Planes S, Adjeroud M (2012) Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS One 7:e47363CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lamy T, Legendre P, Chancerelle Y, Siu G, Claudet J (2015) Understanding the spatio-temporal response of coral reef fish communities to natural disturbances: insights from beta-diversity decomposition. PLoS One 10:e0138696CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ledlie MH, Graham NAJ, Bythell JC, Wilson SK, Jennings S, Polunin NVC, Hardcastle J (2007) Phase shifts and the role of herbivory in the resilience of coral reefs. Coral Reefs 26:641–653CrossRefGoogle Scholar
  40. Madi Moussa R (2010) Estimation de la taille des poissons lagonaires vendus sous la forme de tui en bord de route sur l’île de Moorea (Polynésie française) par analyse de clichés numériques. Cybium 34:73–82Google Scholar
  41. Mumby PJ (2009) Herbivory versus corallivory: are parrotfish good or bad for Caribbean coral reefs? Coral Reefs 28:683–690CrossRefGoogle Scholar
  42. Mumby PJ, Steneck RS, Adjeroud M, Arnold SN (2015) High resilience masks underlying sensitivity to algal phase shifts of Pacific coral reefs. Oikos. doi:10.1111/oik.02673 Google Scholar
  43. Munday PL (2004) Habitat loss, resource specialization, and extinction on coral reefs. Glob Chang Biol 10:1642–1647CrossRefGoogle Scholar
  44. Nash KL, Graham N, Bellwood DR (2013) Fish foraging patterns, vulnerability to fishing and implications for the management of ecosystem function across scales. Ecol Appl 23:1632–1644CrossRefPubMedGoogle Scholar
  45. Ochavillo D, Tofaeono S, Sabater M, Trip EL (2011) Population structure of Ctenochaetus striatus (Acanthuridae) in Tutuila, American Samoa: the use of size-at-age data in multi-scale population size surveys. Fish Res 107:14–21CrossRefGoogle Scholar
  46. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: community ecology package. R package version 2.0-10. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  47. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422CrossRefPubMedGoogle Scholar
  48. Penin L, Michonneau F, Baird AH, Connolly SR, Pratchett MS, Kayal M, Adjeroud M (2010) Early post-settlement mortality and the structure of coral assemblages. Mar Ecol Prog Ser 408:55–64CrossRefGoogle Scholar
  49. Pratchett MS, Trapon M, Berumen ML, Chong-Seng K (2011a) Recent disturbances augment community shifts in coral assemblages in Moorea, French Polynesia. Coral Reefs 30:183–193CrossRefGoogle Scholar
  50. Pratchett MS, Hoey AS, Wilson SK, Messmer V, Graham NAJ (2011b) Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3:424–452CrossRefGoogle Scholar
  51. Russ G (1984) Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. II. Patterns of zonation of mid-shelf and outershelf reefs. Mar Ecol Prog Ser 20:35–44CrossRefGoogle Scholar
  52. Russ GR, Questel SLA, Rizzari JR, Alcala AC (2015) The parrotfish-coral relationship: refuting the ubiquity of a prevailing paradigm. Mar Biol 162:2029–2045CrossRefGoogle Scholar
  53. Sano M, Shimizu M, Nose Y (1987) Long-term effects of destruction of hermatypic corals by Acanthaster planci infestation on reef fish communities at Iriomote Island, Japan. Mar Ecol Prog Ser 37:191–199CrossRefGoogle Scholar
  54. Taylor BM, Houk P, Russ GR, Choat JH (2014) Life histories predict vulnerability to overexploitation in parrotfishes. Coral Reefs 33:869–878CrossRefGoogle Scholar
  55. Tootell JS, Steele MA (2015) Distribution, behavior and condition of herbivorous fishes on coral reefs track algal resources. Oecologia. doi:10.1007/s00442-015-3418-z PubMedGoogle Scholar
  56. Trapon ML, Pratchett MS, Penin L (2011) Comparative effects of different disturbances in coral reef habitats in Moorea, French Polynesia. J Mar Biol 2011:1–11CrossRefGoogle Scholar
  57. White JSS, O’Donnell JL (2010) Indirect effects of a key ecosystem engineer alter survival and growth of foundation coral species. Ecology 91:3538–3548CrossRefPubMedGoogle Scholar
  58. Williams ID, Polunin NVC (2001) Large-scale associations between macroalgal cover and grazer biomass on mid-depth reefs in the Caribbean. Coral Reefs 19:358–366CrossRefGoogle Scholar
  59. Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Chang Biol 12:2220–2234CrossRefGoogle Scholar
  60. Wilson SK, Adjeroud M, Bellwood DR, Berumen ML, Booth D, Bozec YM, Chabanet P, Cheal A, Cinner J, Depczynski M, Feary DA, Gagliano M, Graham NAJ, Halford AR, Halpern BS, Harborne AR, Hoey AS, Holbrook SJ, Jones GP, Kulbiki M, Letourneur Y, Lison de Loma T, McClanahan T, McCormick MI, Meekan MG, Mumby PJ, Munday PL, Öhman MC, Pratchett MS, Riegl B, Sano M, Schmitt RJ, Syms C (2010) Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. J Exp Biol 213:894–900CrossRefGoogle Scholar
  61. Wismer S, Hoey A, Bellwood D (2009) Cross-shelf benthic community structure on the Great Barrier Reef: relationships between macroalgal cover and herbivore biomass. Mar Ecol Prog Ser 376:45–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xueying Han
    • 1
  • Thomas C. Adam
    • 2
  • Russell J. Schmitt
    • 1
    • 2
  • Andrew J. Brooks
    • 2
  • Sally J. Holbrook
    • 1
    • 2
  1. 1.Department of Ecology, Evolution and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.Coastal Research Center, Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations