Skip to main content

Advertisement

Log in

Genetic connectivity and self-replenishment of inshore and offshore populations of the endemic anemonefish, Amphiprion latezonatus

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Globally, marine species are under increasing pressure from human activities, including ocean warming, acidification, pollution, and overfishing. Species most vulnerable to these pressures tend to be ecological specialists that have low abundance and small distribution ranges (endemics). Marine endemics often exist as meta-populations distributed among few isolated locations. Determining genetic connectivity among these locations is essential to understanding the recovery potential of endemics after local extinction events. This study examined connectivity in the endemic anemonefish, Amphiprion latezonatus, a habitat specialist with low abundance at most locations. Evolutionary and contemporary migration, genetic diversity, and self-replenishment among the four main locations (Sunshine Coast, North Solitary Island, Lord Howe Island, and Norfolk Island) that comprise the entire A. latezonatus geographic range were assessed using mtDNA and microsatellite markers. Though historical gene flow inferred from mtDNA appeared high, population genetic differentiation was evident and contemporary gene flow inferred from microsatellites was limited, alongside very high (≥89 %) self-replenishment at all locations. Together, these data suggest prolonged recovery times following severe population decline (or extirpation) and indicate a need to protect this species at all locations, particularly Norfolk Island and Sunshine Coast where marine protected areas are lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Allen GR (2008) Conservation hotspots of biodiversity and endemism for Indo-Pacific coral reef fishes. Aquat Conserv 18:541–556

    Article  Google Scholar 

  • Almany GR, Berumen M, Thorrold S (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744

    Article  CAS  PubMed  Google Scholar 

  • Almany GR, Connolly SR, Heath DD, Hogan JD, Jones GP, McCook LJ, Mills M, Pressey RL, Williamson DH (2009) Connectivity, biodiversity conservation and the design of marine reserve networks for coral reefs. Coral Reefs 28:339–351

    Article  Google Scholar 

  • Bay LK, Caley MJ (2011) Greater genetic diversity in spatially restricted coral reef fishes suggests secondary contact among differentiated lineages. Diversity 3:483–502

    Article  Google Scholar 

  • Bay LK, Crozier RH, Caley MJ (2006) The relationship between population genetic structure and pelagic larval duration in coral reef fishes on the Great Barrier Reef. Mar Biol 149:1247–1256

    Article  Google Scholar 

  • Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326

    Article  PubMed  PubMed Central  Google Scholar 

  • Beger M, Sommer B, Harrison PL, Smith SD, Pandolfi JM (2014) Conserving potential coral reef refuges at high latitudes. Divers Distrib 20:245–257

    Article  Google Scholar 

  • Berumen ML, Almany GR, Planes S, Jones GP, Saenz-Agudelo P, Thorrold SR (2012) Persistence of self-recruitment and patterns of larval connectivity in a marine protected area network. Ecol Evol 2:444–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Booth DJ, Figueira WF, Gregson MA, Brown L, Beretta G (2007) Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuar Coast Mar Sci 72:102–114

    Article  Google Scholar 

  • Bostock HC, Opdyke BN, Gagan MK, Kiss AE, Fifield LK (2006) Glacial/interglacial changes in the East Australian Current. Clim Dynam 26:645–659

    Article  Google Scholar 

  • Burgess SC, Nickols KJ, Griesemer CD, Barnett LAK, Dedrick AG, Satterthwaite EV, Yamane L, Morgan SG, White JW, Botsford LW (2014) Beyond connectivity: how empirical methods can quantify population persistence to improve marine protected area design. Ecol Appl 24:257–270

    Article  PubMed  Google Scholar 

  • Burrage D, Steinberg C, Bode L, Black K (1997) Long-term current observations in the Great Barrier Reef. State of the Great Barrier Reef World Heritage Area Workshop. Great Barrier Reef Marine Park Authority, Townsville, pp 21–45

  • Carvalho GR (1993) Evolutionary aspects of fish distribution: genetic variability and adaptation. J Fish Biol 43:53–73

    Article  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Craig MT, Eble JA, Bowen BW (2010) Origins, ages and population histories: comparative phylogeography of endemic Hawaiian butterflyfishes (genus Chaetodon). J Biogeogr 37:2125–2136

    Article  Google Scholar 

  • Crean AJ, Swearer SE, Patterson HM (2010) Larval supply is a good predictor of recruitment in endemic but not non-endemic fish populations at a high latitude coral reef. Coral Reefs 29:137–143

    Article  Google Scholar 

  • Delrieu-Trottin E, Maynard J, Planes S (2014) Endemic and widespread coral reef fishes have similar mitochondrial genetic diversity. Proc R Soc Lond B Biol Sci 281:20141068

    Article  Google Scholar 

  • Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13:68–75

    Article  PubMed  Google Scholar 

  • Drew JA, Barber PH (2012) Comparative phylogeography in Fijian coral reef fishes: a multi-taxa approach towards marine reserve design. PLoS One 7:e47710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudgeon CL, Gust N, Blair D (2000) No apparent genetic basis to demographic differences in scarid fishes across continental shelf of the Great Barrier Reef. Mar Biol 137:1059–1066

    Article  Google Scholar 

  • Dulvy NK, Sadovy Y, Reynolds JD (2003) Extinction vulnerability in marine populations. Fish Fish 4:25–64

    Article  Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Con Genet Resources 4:359–361

    Article  Google Scholar 

  • Edgar GJ, Davey A, Kelly G, Mawbey RB, Parsons K (2010) Biogeographical and ecological context for managing threats to coral and rocky reef communities in the Lord Howe Island Marine Park, south-western Pacific. Aquat Conserv 20:378–396

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Evans RD, van Herwerden L, Russ GR, Frisch AJ (2010) Strong genetic but not spatial subdivision of two reef fish species targeted by fishers on the Great Barrier Reef. Fish Res 102:16–25

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Faubet P, Waples R, Gaggiotti O (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166

    Article  PubMed  Google Scholar 

  • Fautin DG, Allen GR (1997) Anemone fishes and their host sea anemones: a guide for aquarists and divers. Revised edition. Western Australian Museum, Perth, 70 pp

  • Figueira WF, Booth DJ (2010) Increasing ocean temperatures allow tropical fishes to survive overwinter in temperate waters. Glob Chang Biol 16:506–516

    Article  Google Scholar 

  • Frankham R (1996) Relationships of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675

    Article  Google Scholar 

  • Frédérich B, Sorenson L, Santini F, Slater GJ, Alfaro ME (2013) Iterative ecological radiation and convergence during the evolutionary history of damselfishes (Pomacentridae). Am Nat 181:94–113

    Article  PubMed  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grant W, Bowen B (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89:415–426

    Article  Google Scholar 

  • Hamon B (1965) The East Australian Current, 1960–1964. Deep Sea Research and Oceanographic Abstracts 12:899–921

    Article  Google Scholar 

  • Harrison HB, Williamson DH, Evans RD, Almany GR, Thorrold SR, Russ GR, Feldheim KA, van Herwerden L, Planes S, Srinivasan M, Berumen ML, Jones GP (2012) Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biol 22:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Harrison PL, Dalton SJ, Carroll AG (2011) Extensive coral bleaching on the world’s southernmost coral reef at Lord Howe Island. Australia. Coral Reefs 30:775

    Article  Google Scholar 

  • Hastings A, Botsford LW (2006) Persistence of spatial populations depends on returning home. Proc Natl Acad Sci U S A 103:6067–6072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori A (2002) Small and large anemonefishes can coexist using the same patchy resources on a coral reef, before habitat destruction. J Anim Ecol 71:824–831

    Article  Google Scholar 

  • Hattori A (2005) High mobility of the protandrous anemonefish Amphiprion frenatus: nonrandom pair formation in limited shelter space. Ichthyol Res 52:57–63

    Article  Google Scholar 

  • Hobbs JPA, Neilson J, Gilligan J (2009) Distribution, abundance, habitat association and extinction risk of marine fishes endemic to the Lord Howe Island region. Lord Howe Island Marine Park summary of research and monitoring. Marine Parks Authority, New South Wales, pp 8–9

    Google Scholar 

  • Hobbs JPA, Jones GP, Munday PL (2011) Extinction risk in endemic marine fishes. Conserv Biol 25:1053–1055

    Article  PubMed  Google Scholar 

  • Hobbs JPA, van Herwerden L, Jerry DR, Jones GP, Munday PL (2013a) High genetic diversity in geographically remote populations of endemic and widespread coral reef angelfishes (genus: centropyge). Diversity 5:39–50

    Article  Google Scholar 

  • Hobbs JPA, Frisch AJ, Ford BM, Thums M, Saenz-Agudelo P, Furby KA, Berumen ML (2013b) Taxonomic, spatial and temporal patterns of bleaching in anemones inhabited by anemonefishes. PLoS One 8:e70966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobday AJ, Pecl GT (2013) Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev Fish Biol Fisher 24:415–425

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839

    Article  Google Scholar 

  • Hoelzel AR, Fleischer RC, Campagna C, Le Boeuf BJ, Alvord G (2002) Impact of a population bottleneck on symmetry and genetic diversity in the northern elephant seal. J Evol Biol 15:567–575

    Article  Google Scholar 

  • Horne JB, van Herwerden L, Abellana S, McIlwain JL (2013) Observations of migrant exchange and mixing in a coral reef fish metapopulation link scales of marine population connectivity. J Hered 104:532–546

    Article  CAS  PubMed  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones AM, Gardner S, Sinclair W (2008) Losing “Nemo”: bleaching and collection appear to reduce inshore populations of anemonefishes. J Fish Biol 73:753–761

    Article  Google Scholar 

  • Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Jones GP, Srinivasan M, Almany GR (2007) Population connectivity and conservation of marine biodiversity. Oceanography 20:100–111

    Article  Google Scholar 

  • Jones GP, Milicich M, Emslie M, Lunow C (1999) Self-recruitment in a coral reef fish population. Nature 402:802–804

    Article  CAS  Google Scholar 

  • Jones GP, Almany GR, Russ GR, Sale PF, Steneck RS, Van Oppen MJH, Willis BL (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28:307–325

    Article  Google Scholar 

  • Kritzer JP, Sale PF (2004) Metapopulation ecology in the sea: from Levins’ model to marine ecology and fisheries science. Fish Fish 5:131–140

    Article  Google Scholar 

  • Lamichhaney S, Martinez Barrio A, Rafati N, Sundström G, Rubin CJ, Gilbert ER, Berglund J, Wetterbom A, Laikre L, Webster ML, Ryman N, Andersson L (2012) Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proc Natl Acad Sci U S A 109:19345–19350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • McCook LJ, Almany GR, Berumen ML, Day JC, Green AL, Jones GP, Leis JM, Planes S, Russ GR, Sale PF, Thorrold SR (2009) Management under uncertainty: guidelines for incorporating connectivity into the protection of coral reefs. Coral Reefs 28:353–366

    Article  Google Scholar 

  • McKinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516

    Article  Google Scholar 

  • Mora C, Sale P (2002) Are populations of coral reef fish open or closed? Trends Ecol Evol 17:422–428

    Article  Google Scholar 

  • Munday PL (2004) Habitat loss, resource specialization, and extinction on coral reefs. Glob Chang Biol 10:1642–1647

    Article  Google Scholar 

  • Munday PL, Dixson DL, Mccormick MI, Meekan M, Ferrari MCO, Chivers DP (2010) Replenishment of fish populations is threatened by ocean acidification. Proc Natl Acad Sci U S A 107:12930–12934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanninga GB, Saenz-Agudelo P, Manica A, Berumen ML (2014) Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea. Mol Ecol 23:591–602

    Article  PubMed  Google Scholar 

  • Nanninga GB, Saenz-Agudelo P, Zhan P, Hoteit I, Berumen ML (2015) Not finding Nemo: limited reef-scale retention in a coral reef fish. Coral Reefs 34:383–392

    Article  Google Scholar 

  • Neilson J, Gudge A, Kerr I (2010) Baited remote underwater video surveys of fish assemblages on reef shelf habitats in Lord Howe Island Marine Park. Report by NSW Department of Environment, Climate Change and Water, Sydney

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci U S A 106:5693–5697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratchett MS, Munday PL, Wilson SK, Graham NAJ, Cinneri JE, Bellwood DR, Jones GP, Polunin NVC, McClanahan TR (2008) Effects of climate-induced coral bleaching on coral-reef fishes – ecological and economic consequences. Oceanogr Mar Biol Annu Rev 46:251–296

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell SW, Clarke KR, Rushworth K, Dalton SJ (2014) Defining critical habitats of threatened and endemic reef fishes with a multivariate approach. Conserv Biol 28:1688–1698

    Article  PubMed  Google Scholar 

  • Ramírez-Soriano A, Ramos-Onsins SE, Rozas J, Calafell F, Navarro A (2008) Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179:555–567

    Article  PubMed  PubMed Central  Google Scholar 

  • Randall JE (1998) Zoogeography of shore fishes of the Indo-Pacific region. Zool Stud 37:227–268

    Google Scholar 

  • Richardson D (1996) Aspects of the ecology of anemonefishes (Pomacentradae: Amphiprion) and giant sea anemones (Actiniaria) within sub-tropical eastern Australian waters. Ph.D. Thesis. Southern Cross University, Lismore, 200 pp

  • Richardson D (1999) Correlates of environmental variables with patterns in the distribution and abundance of two anemonefishes (Pomacentridae: amphiprion) on an eastern Australian sub-tropical reef system. Environ Biol Fish 55:255–263

    Article  Google Scholar 

  • Richardson D, Harrison P, Harriott V (1997) Timing of spawning and fecundity of a tropical and subtropical anemonefish (Pomacentridae: Amphiprion) on a high-latitude reef on the east coast of Australia. Mar Ecol Prog Ser 156:175–181

    Article  Google Scholar 

  • Ridgway KR (2007) Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys Res Let 34:1–5

    Google Scholar 

  • Ridgway KR, Dunn JR (2003) Mesoscale structure of the mean East Australian Current system and its relationship with topography. Prog Oceanogr 56:189–222

    Article  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeir CG, Scheuler FW, Spalding M, Wells F, Vynne C, Werner T (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  CAS  PubMed  Google Scholar 

  • Robinson LM, Gledhill DC, Moltschaniwskyj NA, Hobday AJ, Frusher S, Barrett N, Stuart-Smith J, Pecl GT (2015) Rapid assessment of an ocean warming hotspot reveals “high” confidence in potential species’ range extensions. Glob Environ Change 31:28–37

    Article  Google Scholar 

  • Rushworth KJW, Smith SDA, Cowden KL, Purcell SW (2011) Optimal temperature for growth and condition of an endemic subtropical anemonefish. Aquaculture 318:479–482

    Article  Google Scholar 

  • Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S (2011) Detrimental effects of host anemone bleaching on anemonefish populations. Coral Reefs 30:497–506

    Article  Google Scholar 

  • Santini S, Polacco G (2006) Finding Nemo: molecular phylogeny and evolution of the unusual life style of anemonefish. Gene 385:19–27

    Article  CAS  PubMed  Google Scholar 

  • Scott A, Malcolm H, Damiano C, Richardson DL (2011) Long-term increases in abundance of anemonefish and their host sea anemones in an Australian marine protected area. Mar Freshw Res 62:87–196

    Google Scholar 

  • Selkoe KA, Gaggiotti OE, Bowen BW, Toonen RJ (2014) Emergent patterns of population genetic structure for a coral reef community. Mol Ecol 23:3064–3079

    Article  PubMed  Google Scholar 

  • Shanks A, Grantham B, Carr M (2003) Propagule dispersal distance and the size and spacing of marine reserves. Ecol Appl 13:S159–S169

    Article  Google Scholar 

  • Shulman J (1998) What can population genetics tell us about dispersal and biogeographic history of coral-reef fishes? Aust J Ecol 23:216–225

    Article  Google Scholar 

  • Steinberg RK, van der Meer MH, Hobbs JPA, Berumen M, van Herwerden L (2015) Characterization of 22 microsatellite loci for conservation genetic studies of an endemic anemonefish, Amphiprion latezonatus. Con Genet Resources 7:95–97

    Article  Google Scholar 

  • Swearer S, Caselle J, Lea D, Warner R (1999) Larval retention and recruitment in an island population of a coral-reef fish. Nature 402:799–802

    Article  CAS  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Meer MH, Hobbs JPA, van Herwerden L (2012a) Genetic connectivity among and self-replenishment within island populations of a restricted range subtropical reef fish. PLoS One 7:e49660

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Meer MH, Berumen ML, van Herwerden L (2015) Population connectivity and the effectiveness of marine protected areas to protect vulnerable, exploited and endemic coral reef fishes at an endemic hotspot. Coral Reefs 34:393–402

    Article  Google Scholar 

  • van der Meer MH, Jones GP, Hobbs JPA, van Herwerden L (2012b) Historic hybridization and introgression between two iconic Australian anemonefish and contemporary patterns of population connectivity. Ecol Evol 2:1592–1604

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Meer MH, Horne JB, Gardner MG, Hobbs JPA, Pratchett M, van Herwerden L (2013) Limited contemporary gene flow and high self-replenishment drives peripheral isolation in an endemic coral reef fish. Ecol Evol 3:1653–1666

    Article  PubMed  PubMed Central  Google Scholar 

  • van Herwerden L, Choat JH, Newman SJ, Leray M, Hillersøy G (2009) Complex patterns of population structure and recruitment of Plectropomus leopardus (Pisces: Epinephelidae) in the Indo-West Pacific: implications for fisheries management. Mar Biol 156:1595–1607

    Article  Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  CAS  PubMed  Google Scholar 

  • Whittaker RJ (1998) Island biogeography: ecology, evolution and conservation. Oxford University Press, Oxford

    Google Scholar 

  • Wilkinson C (ed) (2004) Status of coral reefs of the world: 2004. Australian Institute of Marine Science, Townsville 557 pp

    Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful for the valuable support and assistance provided by: S. Gudge and I. Kerr at Lord Howe Island Marine Park; P. Wruck (Oceanpets) at the Sunshine Coast; C. Connell and I. Banton (Dive Quest, Mullaway) and A. Scott at North Solitary Island; D. Biggs (Charter Marine), J. Edward (Bounty Divers), D. Creek, M. Smith, J. Marges, K. Christian, and J. and P. Davidson (Reserves and Forestry) at Norfolk Island. This work was financially supported by a GBRMPA Science for Management award, the Griffith/James Cook University collaborative grant scheme (2011), and the ARC Centre of Excellence for Coral Reef Studies. We thank the Molecular Ecology and Evolution Laboratory, Australian Tropical Sciences and Innovation Precinct, James Cook University, for providing facilities for molecular work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary Steinberg.

Additional information

Communicated by Ecology Editor Dr. Alastair Harborne

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Supplementary material 2 (EPS 1032 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinberg, R., van der Meer, M., Walker, E. et al. Genetic connectivity and self-replenishment of inshore and offshore populations of the endemic anemonefish, Amphiprion latezonatus . Coral Reefs 35, 959–970 (2016). https://doi.org/10.1007/s00338-016-1420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-016-1420-5

Keywords

Navigation