Advertisement

Coral Reefs

, Volume 35, Issue 2, pp 437–450 | Cite as

Cryptic species of cardinalfish with evidence for old and new divergence

  • Gabriele Gerlach
  • Jelle Atema
  • Michael J. Raupach
  • Fabian Deister
  • Anke Müller
  • Michael J. Kingsford
Report

Abstract

Larval dispersal and limited knowledge of physical boundaries challenge our understanding of the processes that drive genetic divergence and potential speciation in the marine environment. Divergence, both within and between populations of marine taxa, is not uncommon, but spatial and temporal stability of observed genetic structure is not well known. Previously, we detected large genetic differences among populations of the cardinalfish species Ostorhinchus doederleini inhabiting adjacent coral reefs. Here, we determined the spatial and temporal persistence of these genetic structures over the course of ten consecutive generations. Using microsatellite markers, we detected large changes (genetic population distance, D est, ranged from 0.04 to 0.46) in the genetic structure in some years, but some reefs maintained the same populations for nearly all sampling years. As this species’ life span does not exceed 1 yr, persistence of distinct reef populations suggests natal homing. Mitochondrial identity based on two mtDNA markers corroborates the nuclear genetic evidence for genetic differences large enough to constitute different clades and even cryptic species in O. doederleini, which, based on gross morphology, was thought to be a single taxon. Habitat specialization was observed in one clade that exclusively inhabited reef lagoons, while all clades could be observed on reef slopes. We suggest that local habitat recognition combined with local population recognition and selection against hybrids can form barriers that maintain a cryptic species complex.

Keywords

Biodiversity Cryptic species Genetic patchiness Marine dispersal Speciation Temporal stability 

Notes

Acknowledgments

We thank Mark O’Callaghan, Andreas Bally, Vanessa Miller-Sims, David Welsh, Naomi Gardiner and Felicity Smith for assistance with sample collection, and Susanne Wallenstein and students from the Marine Biological Laboratory, Woods Hole, USA, for helping to process samples. Photograph of O. doederleini (Fig. 5b) was taken by Andreas Bally. Thanks to Sebastian Schmidt Roach for helpful comments on the manuscript; Gabrielle Miller for improving the language style. This work was funded by National Science Foundation Grant OCE-0452885, the German Science Foundation (Ge 842/6-1) to G.G. and OCE-0452988 to J.A., National Geographic Society Grant 7236-02, and ARC Centre of Excellence for Coral Reef Studies grant (to M.J.K.).

Supplementary material

338_2015_1395_MOESM1_ESM.pdf (757 kb)
Supplementary material 1 (PDF 757 kb)

References

  1. Allen GR (2009) Field guide to marine fishes of tropical Australia and Southeast Asia. Western Australian Museum, PerthGoogle Scholar
  2. Atema J, Kingsford M, Gerlach G (2002) Larval reef fish could use odour for detection, retention and orientation to reefs. Mar Ecol Prog Ser 241:151–160CrossRefGoogle Scholar
  3. Baldwin CC, Mounts JH, Smith DG, Weigt LA (2009) Genetic identification and color descriptions of early life-history stages of Belizean Phaeoptyx and Astrapogon (Teleostei: Apogonidae) with comments on identification of adult Phaeoptyx. Zootaxa 2008:1–22Google Scholar
  4. Bargelloni L, Alarcon JA, Alvarez MC, Penzo E, Magoulas A, Reis C, Patarnello T (2003) Discord in the family Sparidae (Teleostei): divergent phylogeographical patterns across the Atlantic-Mediterranean divide. J Evol Biol 16:1149–1158CrossRefPubMedGoogle Scholar
  5. Bay LK, Jones GP, McCormick MI (2001) Habitat selection and aggression as determinants of spatial segregation among damselfish on a coral reef. Coral Reefs 20:289–298CrossRefGoogle Scholar
  6. Belkhir K, Borsa P, Goudet J, Chikhi L, Bonhomme F (1997) Genetix v. 3.0, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome et Populations, CNRS UPR 9060, Université Montpellier 2, MontpellierGoogle Scholar
  7. Bernardi G, Vagelli A (2004) Population structure in Banggai cardinalfish, Pterapogon kauderni, a coral reef species lacking a pelagic larval phase. Mar Biol 145:803–810Google Scholar
  8. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155CrossRefPubMedGoogle Scholar
  9. Burford MO, Bernardi G, Carr MH (2011) Analysis of individual year-classes of a marine fish reveals little evidence of first-generation hybrids between cryptic species in sympatric regions. Mar Biol 158:1815–1827CrossRefGoogle Scholar
  10. Christie MR, Johnson DW, Stallings CD, Hixon MA (2010) Self-recruitment and sweepstakes reproduction amid extensive gene flow in a coral-reef fish. Mol Ecol 19:1042–1057CrossRefPubMedGoogle Scholar
  11. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol Notes 9:1657–1660CrossRefGoogle Scholar
  12. Colborn J, Crabtree RE, Shaklee JB, Pfeiler E, Bowen BW (2001) The evolutionary enigma of bonefishes (Albula spp.): cryptic species and ancient separations in a globally distributed shorefish. Evolution 55:807–820CrossRefPubMedGoogle Scholar
  13. Døving KB, Stabell OB, Östlund-Nilsson S, Fisher R (2006) Site fidelity and homing in tropical coral reef cardinalfish: are they using olfactory cues? Chem Senses 31:265–272CrossRefPubMedGoogle Scholar
  14. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  16. Excoffier L, Lischer HEL (2010) ARLEQUIN suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567CrossRefGoogle Scholar
  17. Farnsworth CA, Bellwood DR, van Herwerden L (2010) Genetic structure across the GBR: evidence from short-lived gobies. Mar Biol 157:945–953CrossRefGoogle Scholar
  18. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  19. Finn MD, Kingsford MJ (1996) Two-phase recruitment of apogonids (Pisces) on the Great Barrier Reef. Mar Freshw Res 47:423–432CrossRefGoogle Scholar
  20. Fisher R (2005) Swimming speeds of larval coral reef fishes: impacts on self-recruitment and dispersal. Mar Ecol Prog Ser 285:223–232CrossRefGoogle Scholar
  21. Gerlach G, Hodgins-Davis A, Avolio C, Schunter C (2008) Kin recognition in zebrafish: a 24-hour window for olfactory imprinting. Proc R Soc Lond B Biol Sci 275:2165–2170CrossRefGoogle Scholar
  22. Gerlach G, Atema J, Kingsford MJ, Black KP, Miller-Sims V (2007) Smelling home can prevent dispersal of reef fish larvae. Proc Natl Acad Sci USA 104:858–863CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gerlach G, Jüterbock A, Krämer P, Deppermann J, Harmand P (2010) Calculations of population differentiation based on GST and D: forget GST but not the statistics! Mol Ecol 19:3845–3852CrossRefPubMedGoogle Scholar
  24. Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electronica 4:1–9Google Scholar
  25. Heads M (2005) Towards a panbiogeography of the seas. Biol J Linn Soc Lond 84:675–723CrossRefGoogle Scholar
  26. Hedgecock D (1994) Temporal and spatial genetic structure of marine animal populations in the California current. California Cooperative Oceanic Fisheries Investigations Reports 35:73–81Google Scholar
  27. Hickey RA, Clements KD (2005) Genome size evolution in New Zealand triplefin fishes. J Hered 96:356–362CrossRefPubMedGoogle Scholar
  28. Hinz C, Gebhardt K, Hartmann AK, Sigman L, Gerlach G (2012) Influence of kinship and MHC class II genotype on visual traits in zebrafish larvae (Danio rerio). PLoS One 7(e5118210):5118137Google Scholar
  29. Hinz C, Kobbenbring S, Kress S, Sigman L, Müller A, Gerlach G (2013a) Kin recognition in zebrafish, Danio rerio, is based on imprinting on olfactory and visual stimuli. Anim Behav 85:925–930CrossRefGoogle Scholar
  30. Hinz C, Namekawa I, Behrmann-Godel J, Oppelt C, Jaeschke A, Müller A, Friedrich RW, Gerlach G (2013b) Olfactory imprinting is triggered by MHC peptide ligands. Sci Rep 3:2800CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026CrossRefPubMedGoogle Scholar
  32. Kingsford MJ, Finn MD, O’Callaghan MD, Atema J, Gerlach G (2014) Planktonic larval duration, age and growth of Ostorhinchuns doederleini (Pisces: Apogonidae) on the southern Great Barrier Reef, Australia. Mar Biol 161:245–259CrossRefGoogle Scholar
  33. Kingsford MJ, Leis JM, Shanks A, Lindeman KC, Morgan SG, Pineda J (2002) Sensory environments, larval abilities and local self-recruitment. Bull Mar Sci 70:309–340Google Scholar
  34. Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216CrossRefGoogle Scholar
  35. Larson RJ, Julian RM (1999) Spatial and temporal genetic patchiness in marine populations and their implications for fisheries management. California Cooperative Oceanic Fisheries Investigations Reports 40:94–99Google Scholar
  36. Lee WJ, Conroy J, Howell WH, Kocher TD (1995) Structure and evolution of teleost mitochondrial control regions. J Mol Evol 41:54–66CrossRefPubMedGoogle Scholar
  37. Leis JM, Siebeck U, Dixson DL (2011) How nemo finds home: the neuroecology of dispersal and of population connectivity in larvae of marine fishes. Integr Comp Biol 51:826–843CrossRefPubMedGoogle Scholar
  38. Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphic data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  39. Liu SYV, Dai CF, Allen GR, Erdmann MV (2012) Phylogeography of the neon damselfish Pomacentrus coelestis indicates a cryptic species and different species origins in the west Pacific Ocean. Mar Ecol Prog Ser 458:155–167CrossRefGoogle Scholar
  40. Mabuchi K, Okuda N, Kokita T, Nishida M (2003) Genetic comparison of two color-morphs of Apogon properuptus from southern Japan. Ichthyol Res 50:293–296CrossRefGoogle Scholar
  41. Mabuchi K, Fraser TH, Song H, Azuma Y, Nishida M (2014) Revision of the systematics of the cardinalfishes (Percomorpha: Apogonidae) based on molecular analyses and comparative reevaluation of morphological characters. Zootaxa 3846:151–203CrossRefPubMedGoogle Scholar
  42. McMillan WO, Palumbi SR (1997) Rapid rate of control-region evolution in pacific butterflyfishes (Chaetodontidae). J Mol Evol 45:473–484CrossRefPubMedGoogle Scholar
  43. Miller-Sims V, Atema J, Kingsford MJ, Gerlach G (2004) Characterization and isolation of DNA microsatellite primers in the cardinalfish (Apogon doederleini). Mol Ecol Notes 4:336–338CrossRefGoogle Scholar
  44. Miller-Sims V, Gerlach G, Kingsford MJ, Atema J (2011) Reef odour imprinting: coral reef fish demonstrate stable olfactory preference for their settlement reef. Mar Freshwr Behav Physiol 44:133–141CrossRefGoogle Scholar
  45. Mirams AGK, Treml EA, Shields JL, Liggins L, Riginos C (2011) Vicariance and dispersal across an intermittent barrier: population genetic structure of marine animals across the Torres Strait land bridge. Coral Reefs 30:937–949CrossRefGoogle Scholar
  46. Mouritsen H, Atema J, Kingsford MJ, Gerlach G (2013) Sun compass orientation helps coral reef fish larvae return to their natal reef. PLoS One 8:e66039CrossRefPubMedPubMedCentralGoogle Scholar
  47. Neilson ME, Stepien CA (2009) Evolution and phylogeography of the tubenose goby genus Proterorhinus (Gobiidae: Teleostei): evidence for new cryptic species. Biol J Linn Soc Lond 96:664–684CrossRefGoogle Scholar
  48. Nosil P (2012) Ecological speciation. Oxford University Press, OxfordCrossRefGoogle Scholar
  49. Palumbi SR, Grabowsky G, Duda T, Geyer L, Tachino N (1997) Speciation and population genetic structure in tropical Pacific sea urchins. Evolution 51:1506–1517CrossRefGoogle Scholar
  50. Pandolfi JM, Kelley R (2008) The Great Barrier Reef in time and space: geology and palaeobiology. In: Hutchings P, Kingsford MJ, Hoegh-Guldberg O (eds) The Great Barrier Reef: biology, environment and management. Springer, Dordrecht, The Netherlands, pp 17–28Google Scholar
  51. Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420CrossRefPubMedGoogle Scholar
  52. Paxton JR, Hoese DF, Allen GR, Hanley JE (1989) Pisces. Australian Government Publishing Service, Canberra, Petromyzontidae to CarangidaeGoogle Scholar
  53. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  54. Pritchard J, Falush D, Stephens M (2002) Inference of population structure in recently admixed populations. Am J Hum Genet 71:177Google Scholar
  55. Radford CA, Stanley JA, Simpson SD, Jeffs AG (2011) Juvenile coral reef fish use sound to locate habitats. Coral Reefs 30:295–305CrossRefGoogle Scholar
  56. Rocha LA, Bowen BW (2008) Speciation in coral-reef fishes. J Fish Biol 72:1101–1121CrossRefGoogle Scholar
  57. Rocha LA, Lindeman KC, Rocha CR, Lessios HA (2008) Historical biogeography and speciation in the reef fish genus Haemulon (Teleostei: Haemulidae). Mol Phylogenet Evol 48:918–928CrossRefPubMedGoogle Scholar
  58. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  59. Rueger T, Harrison HB, Jones GP, Mansour H, Berumen ML (2015) Resolving genealogical relationships in the Pyjama cardinalfish, Sphaeramia nematoptera (Apogonidae) with 23 novel microsatellite markers. Conserv Genet Resour 7:623–626CrossRefGoogle Scholar
  60. Spalding MD, Ravilious C, Green EP (2001) World atlas of coral reefs. World Conservation Monitoring Centre, University of California Press, Berkeley, United Nations Environment Programme, 416Google Scholar
  61. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  62. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75:758–771CrossRefGoogle Scholar
  63. Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285PubMedGoogle Scholar
  64. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  65. Technelysium PL (2012) Chromas Lite version 2.1. South Brisbane, Queensland, AustraliaGoogle Scholar
  66. Terry A, Bucciarelli G, Bernardi G (2000) Restricted gene flow and incipient speciation in disjunct Pacific Ocean and Sea of Cortez populations of a reef fish species, Girella nigricans. Evolution 54:652–659CrossRefPubMedGoogle Scholar
  67. van Oosterhout C, Hutchinson WF, Derek PMW, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  68. Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167CrossRefGoogle Scholar
  69. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Phil Trans R Soc Lond B Biol Sci 360:1847–1857CrossRefGoogle Scholar
  70. Webster JA, Davies PJ (2003) Coral variation in tow deep drill cores: significance for the Pleistocene development of the Great Barrier Reef. Sediment Geol 159:61–80CrossRefGoogle Scholar
  71. Wellenreuther M, Clements KD (2008) Determinants of habitat association in a sympatric clade of marine fishes. Mar Biol 154:393–402CrossRefGoogle Scholar
  72. Zhu S, Degnan JH, Steel M (2011) Clades, clans, and reciprocal monophyly under neutral evolutionary models. Theor Popul Biol 79:220–227CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gabriele Gerlach
    • 1
    • 4
  • Jelle Atema
    • 2
  • Michael J. Raupach
    • 3
  • Fabian Deister
    • 1
  • Anke Müller
    • 1
  • Michael J. Kingsford
    • 4
  1. 1.Carl von Ossietzky University OldenburgOldenburgGermany
  2. 2.Boston University Marine ProgramBostonUSA
  3. 3.Senckenberg am Meer, German Center of Marine Biodiversity ResearchWilhelmshavenGermany
  4. 4.Centre of Excellence for Coral Reef Studies and School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia

Personalised recommendations