Coral Reefs

, Volume 35, Issue 1, pp 113–123 | Cite as

Mesophotic reef fish assemblages of the remote St. Peter and St. Paul’s Archipelago, Mid-Atlantic Ridge, Brazil

  • Marcos Rogerio Rosa
  • Aline Cristina Alves
  • Diego Valverde Medeiros
  • Ericka Oliveira Cavalcanti Coni
  • Camilo Moitinho Ferreira
  • Beatrice Padovani Ferreira
  • Ricardo de Souza Rosa
  • Gilberto Menezes Amado-Filho
  • Guilherme Henrique Pereira-Filho
  • Rodrigo Leão de Moura
  • Fabiano Lopes Thompson
  • Paulo Yukio Gomes Sumida
  • Ronaldo Bastos Francini-Filho


Mesophotic reef fish assemblages (30–90 m depth) of the small and remote St. Peter and St. Paul’s Archipelago (SPSPA), Mid-Atlantic Ridge, Brazil, were characterized using remotely operated vehicles. Ordination analyses identified distinct fish assemblages in the upper (30–50 m) and lower (50–90 m) mesophotic zones, the former characterized by high abundances of species that are also abundant at euphotic reefs (Caranx lugubris, Melichthys niger, Stegastes sanctipauli and Chromis multilineata) and the latter dominated by two mesophotic specialists (Prognathodes obliquus and Chromis enchrysura). Planktivores dominated fish assemblages, particularly in the upper mesophotic zone, possibly due to a greater availability of zooplankton coming from the colder Equatorial Undercurrent in mesophotic depths of the SPSPA. Turf algae, fleshy macroalgae and scleractinian corals dominated benthic assemblages between 30 and 40 m depth, while bryozoans, black corals and sponges dominated between 40 and 90 m depth. Canonical correspondence analysis explained 74 % of the relationship between environmental characteristics (depth, benthic cover and complexity) and structure of fish assemblages, with depth as the most important independent variable. Juveniles of Bodianus insularis and adults of P. obliquus and C. enchrysura were clearly associated with branching black corals (Tanacetipathes spp.), suggesting that black corals play key ecological roles in lower mesophotic reefs of the SPSPA. Results from this study add to the global database about mesophotic reef ecosystems (MREs) and provide a baseline for future evaluations of possible anthropogenic and natural disturbances on MREs of the SPSPA.


Black corals Bodianus insularis Mesophotic reefs Oceanic islands Prognathodes obliquus Stegastes sanctipauli 



We thank M. Villela, A.P.B. Moreira, L.S. Rodrigues and D. Sartor for field assistance and data collection; T. J. Mello for helping with data analyses; APA Fernando de Noronha/Rocas/São Pedro e São Paulo/ICMBio for providing research permits; and the crew of Transmar I and Transmar III, as well as Secretaria de Comissão Interministerial para os Recursos do Mar (SECIRM) for logistical support. Financial support was provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Grant 557185/09-2 to RBFF and 484875/2011-6 to GHPF). BPF, FLT, GMAF, PYGS, RBFF and RSR acknowledge individual grants from CNPq. GMAF, FLT and RLM acknowledge individual grants from Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). MRR acknowledges a doctoral fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).


  1. Anderson WD, Heemstra PC (2012) Review of Atlantic and Eastern Pacific Anthiine fishes (Teleostei: Perciformes: Serranidae), with descriptions of two new genera. Trans Am Philos Soc 102:1–173Google Scholar
  2. Bak RPM, Nieuwland G, Meesters EH (2005) Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire. Coral Reefs 24:475–479CrossRefGoogle Scholar
  3. Bejarano IR, Appeldoorn S, Nemeth M (2014) Fishes associated with mesophotic coral ecosystems in La Parguera, Puerto Rico. Coral Reefs 33:313–328CrossRefGoogle Scholar
  4. Boland RC, Parrish FA (2005) A description of fish assemblages in the black coral beds off Lahaina, Maui, Hawai’i. Pac Sci 59:411–420CrossRefGoogle Scholar
  5. Bongaerts P, Ridgeway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327CrossRefGoogle Scholar
  6. Bongaerts P, Frade PR, Hay KB, Englebert N, Latijnhouwers KR, Bak RP, Vermeij MJA, Hoegh-Guldberg O (2015) Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci Rep. doi: 10.1038/srep07652 PubMedCentralPubMedGoogle Scholar
  7. Bowen VT (1966) St. Paul’s on the subway. Oceanus 12:2–4Google Scholar
  8. Brokovich E, Einbinder S, Kark S, Shashar N, Kiflawi M (2007) A deep nursery for juveniles of the zebra angelfish Genicanthus caudovittatus. Env Biol Fish 80:1–6CrossRefGoogle Scholar
  9. Brokovich E, Einbinder S, Shashar N, Kiflawi M, Kark S (2008) Descending to the twilight-zone: coral reef fish assemblages change along a depth gradient down to 65 m. Mar Ecol Prog Ser 371:253–262CrossRefGoogle Scholar
  10. Brokovich E, Ayalon I, Einbinder S, Segev N, Shaked Y, Genin A, Kark S, Kiflawi M (2010) Grazing pressure on coral reefs decreases across a wide depth gradient in the Gulf of Aqaba, Red Sea. Mar Ecol Prog Ser 399:69–80CrossRefGoogle Scholar
  11. Bryan DR, Kilfoyle K, Gilmore RG, Spieler RE (2013) Characterization of the mesophotic reef fish community in south Florida, USA. J App Ichthyol 29:108–117CrossRefGoogle Scholar
  12. Choat JH (1991) The biology of herbivorous fishes on coral reefs. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 120–155CrossRefGoogle Scholar
  13. Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Natural Environment Research Council, PlymouthGoogle Scholar
  14. Colin PL (1974) Observation and collection of deep reef fishes off the coasts of Jamaica and Honduras. Mar Biol 24:29–38CrossRefGoogle Scholar
  15. Colin PL, Devaney DM, Hillis-Colinvaux L, Suchanek TH, Harrison JT (1986) Geology and biological zonation of the reef slope, 50–360 m depth at Enewetak Atoll, Marshall Islands. Bull Mar Sci 38:111–128Google Scholar
  16. Dahlgren CP, Eggleston DB (2000) Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81:2227–2240CrossRefGoogle Scholar
  17. Dennis GD, Bright TJ (1988) Reef fish assemblages on hard banks in the northwest Gulf of Mexico. Bull Mar Sci 43:280–307Google Scholar
  18. Edwards A, Lubbock R (1983a) Marine zoogeography of St. Paul’s Rocks. J Biogeogr 10:65–72CrossRefGoogle Scholar
  19. Edwards A, Lubbock R (1983b) The ecology of Saint Paul’s Rocks (Equatorial Atlantic). J Zool 200:51–69CrossRefGoogle Scholar
  20. Feitoza BM, Rocha LA, Luiz OJ, Floeter SR, Gasparini JL (2003) Reef fishes of St. Paul’s Rocks: new records and notes on biology and zoogeography. Aqua 7:61–82Google Scholar
  21. Feitoza BM, Rosa RS, Rocha LA (2005) Ecology and zoogeography of deep-reef fishes in northeastern Brazil. Bull Mar Sci 76:725–742Google Scholar
  22. Ferreira CEL, Luiz OJ, Feitoza B, Ferreira CGW, Gasparini JL, Noguchi RC, Godoy EA, Joyeux JC, Rangel CA, Rocha LA, Floeter SR, Carvalho-Filho A (2009) Peixes recifais: síntese do atual conhecimento. In: Viana DL, Hazin FHV, Souza MAC (eds) O Arquipélago de São Pedro e São Paulo: 10 anos de estação científica. SECIRM, Brasília, pp 244–340Google Scholar
  23. Fitzpatrick BM, Harvey ES, Heyward AJ, Twiggs EJ, Colquhoun J (2012) Habitat specialization in tropical continental shelf demersal fish assemblages. PLoS One 7:e39634PubMedCentralCrossRefPubMedGoogle Scholar
  24. Floeter SR, Gasparini JL (2000) The southwestern Atlantic reef-fish fauna: composition and zoogeographic patterns. J Fish Biol 56:1099–1114CrossRefGoogle Scholar
  25. Floeter SR, Krohling W, Gasparini JL, Ferreira CE, Zalmon IR (2007) Reef fish community structure on coastal islands of the southeastern Brazil: the influence of exposure and benthic cover. Env Biol Fish 78:147–160CrossRefGoogle Scholar
  26. Floeter SR, Rocha LA, Robertson DR, Joyeux JC, Smith-Vaniz WF, Wirtz P, Edwards AJ, Barreiros JP, Ferreira CEL, Gasparini JL, Brito A, Falcón JM, Bowen BW, Bernardi G (2008) Atlantic reef fish biogeography and evolution. J Biogeogr 35:22–47Google Scholar
  27. Francini-Filho RB, Moura RL (2008) Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat Conserv 18:1166–1179CrossRefGoogle Scholar
  28. Garcia-Sais JR (2010) Reef habitats and associated sessile-benthic and fish assemblages across a euphotic-mesophotic depth gradient in Isla Desecheo, Puerto Rico. Coral Reefs 29:277–288CrossRefGoogle Scholar
  29. Harris PT, Bridge TCL, Beaman RJ, Webster JM, Nichol SL, Brooke BP (2013) Submerged banks in the Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J Mar Sci 70:284–293CrossRefGoogle Scholar
  30. Hastie TJ, Tibshirani RJ (1990). Generalized additive models. Monographs on Statistics and Applied Probability, vol. 43. CRC Press, Boca Ratan, FLGoogle Scholar
  31. Hazin FHV, Viana D, Pinheiro P, Fischer A, Macena B, Véras D, Oliveira P, Carvalho F, Vaske-Jr T, Branco I (2009) Ecologia de grandes peixes pelágicos. In: Viana DL, Hazin FHV, Souza MAC (eds) O Arquipélago de São Pedro e São Paulo: 10 anos de estação científica. SECIRM, Brasília, pp 226–233Google Scholar
  32. Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, Appeldoorn R (2010) Introduction to mesophotic coral ecosystems: characterization, ecology, and management. Coral Reefs 29:247–251CrossRefGoogle Scholar
  33. Kahng SE, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275CrossRefGoogle Scholar
  34. Kahng SE, Copus JM, Wagner D (2014) Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Curr Opin Environ Sustain 7:72–81CrossRefGoogle Scholar
  35. Kane C, Kosaki RK, Wagner D (2014) High levels of mesophotic reef fish endemism in the northwestern Hawaiian Islands. Bull Mar Sci 90:693–703CrossRefGoogle Scholar
  36. Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269CrossRefGoogle Scholar
  37. Krajewski JP, Floeter SR (2011) Reef fish community structure of the Fernando de Noronha Archipelago (Equatorial Western Atlantic): the influence of exposure and benthic composition. Environ Biol Fish 92:25–40CrossRefGoogle Scholar
  38. Lesser MP, Slattery M (2011) Invasive lionfish causes a phase shift to algal dominated communities at mesophotic depths on a Bahamian coral reef. Biol Invasions 13:1855–1868CrossRefGoogle Scholar
  39. Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8CrossRefGoogle Scholar
  40. Lobel PS (1981) Bodianus prognathus (Labridae, Pisces), a new longnose hogfish from the Central Pacific. Pac Sci 35:45–50Google Scholar
  41. Longo GO, Morais RA, Martins CDL, Mendes TC, Aued AW, Cândido DV, Oliveira JC, Nunes LT, Fontoura L, Sissini MN, Teschima MM, Silva MB, Ramlov F, Gouvea LP, Ferreira CEL, Segal B, Horta PA, Floeter SR (2015) Between-habitat variation of benthic cover, reef fish assemblage and feeding pressure on the benthos at the only atoll in South Atlantic: Rocas Atoll, NE Brazil. PloS One 10:e0127176PubMedCentralCrossRefPubMedGoogle Scholar
  42. Lubbock R, Edwards A (1981) The fishes of Saint Paul’s rocks. J Fish Biol 18:135–157CrossRefGoogle Scholar
  43. Luiz O, Edwards AL (2011) Extinction of a shark population in the Archipelago of Saint Paul’s Rocks (equatorial Atlantic) inferred from the historical record. Biol Conserv 144:2873–2881CrossRefGoogle Scholar
  44. Luiz O, Mendes T, Barneche D, Ferreira C, Noguchi R, Villaca R, Rangel CA, Gasparini JL, Ferreira CEL (2015) Community structure of reef fishes on a remote oceanic island (St. Peter and St. Paul’s Archipelago, equatorial Atlantic): the relative influence of abiotic and biotic variables. Mar Freshw Res [doi:  10.1071/MF14150]
  45. Magalhães GM, Amado-Filho GM, Rosa MR, Moura RL, Brasileiro PS, Moraes FC, Francini-Filho RB, Pereira-Filho GH (2015) Changes in benthic communities along a 0–60 m depth gradient in the remote St. Peter and St. Paul Archipelago (Mid-Atlantic Ridge, Brazil). Bull Mar Sci [doi:  10.5343/bms.2014.1044]
  46. Meirelles PM, Amado-Filho GM, Pereira-Filho GH, Pinheiro HT, Moura RL, Joyeux JC, Mazzei EF, Bastos AC, Edwards RA, Dinsdale E, Paranhos R, Santos EO, Iida T, Gotoh K, Nakamura S, Sawabe T, Rezende CE, Gadelha LMR Jr, Francini-Filho RB, Thompson C, Thompson FL (2015) Baseline assessment of mesophotic reefs of the Vitória-Trindade seamount chain based on water quality, microbial diversity, benthic cover and fish biomass data. PloS One 10:e0130084PubMedCentralCrossRefPubMedGoogle Scholar
  47. McGehee MA (1994) Correspondence between assemblages of coral reef fishes and gradients of water motion, depth, and substrate size off Puerto Rico. Mar Ecol Prog Ser 105:243–255CrossRefGoogle Scholar
  48. Menza C, Kendall M, Rogers C, Miller J (2007) A deep reef in deep trouble. Cont Shelf Res 27:2224–2230CrossRefGoogle Scholar
  49. Minte-Vera CV, Moura RL, Francini-Filho RB (2008) Nested sampling: an improved visual-census technique for studying reef fish assemblages. Mar Ecol Prog Ser 367:283–293CrossRefGoogle Scholar
  50. Moura RL, Francini-Filho RB, Chaves EM, Minte-Vera CV, Lindeman K (2011) Use of riverine through reef habitat systems by dog snapper (Lutjanus jocu) in eastern Brazil. Estuar Coast Shelf Sci 95:274–278CrossRefGoogle Scholar
  51. Nagelkerken I, van der Velde G, Gorissen MW, Meijer GJ, van’t Hof T, den Hartog C (2000) Importance of mangroves, seagrass beds, and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar Coast Shelf Sci 51:31–44CrossRefGoogle Scholar
  52. Papastamatiou YP, Meyer CG, Kosaki RK, Wallsgrove NJ, Popp BN (2015) Movements and foraging of predators associated with mesophotic coral reefs and their potential for linking ecological habitats. Mar Ecol Prog Ser 521:155–170CrossRefGoogle Scholar
  53. Pereira-Filho GH, Amado-Filho GM, Guimarães SMPB, Moura RL, Sumida PYG, Abrantes DP, Bahia RG, Guth AZ, Jorge RR, Francini-Filho RB (2011) Reef fish and benthic assemblages of the Trindade and Martin Vaz island group, southwestern Atlantic. Braz J Oceanogr 59:201–212Google Scholar
  54. Pinheiro HT, Ferreira CEL, Joyeux JC, Santos RG, Horta PA (2011) Reef fish structure and distribution in a south-western Atlantic Ocean tropical island. J Fish Biol 79:1984–2006CrossRefPubMedGoogle Scholar
  55. Pinheiro HT, Mazzei E, Moura RL, Amado-Filho GM, Carvalho-Filho A, Braga AC, Costa PAS, Ferreira BP, Ferreira CEL, Floeter SR, Francini-Filho RB, Gasparini JL, Macieira RM, Martins AS, Olavo G, Pimentel CR, Rocha LA, Sazima I, Simon T, Teixeira JB, Xavier LB, Joyeux JC (2015) Fish biodiversity of the Vitória-Trindade Seamount Chain, southwestern Atlantic: an updated database. PloS One 10:e0118180PubMedCentralCrossRefPubMedGoogle Scholar
  56. Pyle RL, Early JL, Greene BD (2008) Five new species of the damselfish genus Chromis (Perciformes: Labroidei: Pomacentridae) from deep coral reefs in the tropical western Pacific. Zootaxa 1671:3–31Google Scholar
  57. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  58. Randall RE, Chen C (1985) First record of the labrid fish Bodianus cylindriatus (Tanaka) from the Hawaiian Islands. Pac Sci 39:291–293Google Scholar
  59. Rocha LA (2003) Patterns of distribution and processes of speciation in Brazilian reef fishes. J Biogeogr 30:1161–1171CrossRefGoogle Scholar
  60. Rosa RS, Moura RL (1997) Visual assessment of reef fish community structure in the Atol das Rocas Biological Reserve, off north-eastern Brazil. Proc 8th Int Coral Reef Symp 1:983–986Google Scholar
  61. Sazima I, Grossman A, Sazima C (2010) Deep cleaning: a wrasse and a goby clean reef fish below 60 m depth in the tropical south-western Atlantic. Mar Biodivers Rec 3:60–63CrossRefGoogle Scholar
  62. Slattery M, Lesser MP, Brazeau D, Stokes MD, Leichter JJ (2011) Connectivity and stability of mesophotic coral reefs. J Exp Mar Biol Ecol 408:32–41CrossRefGoogle Scholar
  63. Swartzman G, Huang C, Kaluzny S (1992) Spatial analysis of Bering Sea groundfish survey data using generalized additive models. Can J Fish Aquat Sci 49:1366–1378CrossRefGoogle Scholar
  64. Tenggardjaja KA, Bowen BW, Bernardi G (2014) Vertical and horizontal genetic connectivity in Chromis verater, an endemic damselfish found on shallow and mesophotic reefs in the Hawaiian Archipelago and adjacent Johnston Atoll. PloS One 9:e115493PubMedCentralCrossRefPubMedGoogle Scholar
  65. ter Braak CJF (1996) Unimodal methods to relate species to environment. Centre for Biometry Wageningen (DLO Agricultural Mathematics Group), Wageningen, The NetherlandsGoogle Scholar
  66. Vaske-Jr T, Lessa RPT, Ribeiro ACB, Nóbrega MF, Pereira AA, Andrade CDP (2006) A pesca comercial de peixes pelágicos no arquipélago de São Pedro e São Paulo, Brasil. Trop Oceanogr 34:31–41Google Scholar
  67. Wagner D, Kosaki RK, Spalding HL, Whitton RK, Pyle RL, Sherwood AR, Tsuda RT, Calcinai B (2014) Mesophotic surveys of the flora and fauna at Johnston Atoll, Central Pacific Ocean. Mar Biodivers Rec 7:e68CrossRefGoogle Scholar
  68. Wilson SK, Graham NAJ, Polunin NVC (2007) Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar Biol 151:1069–1076CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marcos Rogerio Rosa
    • 1
  • Aline Cristina Alves
    • 2
  • Diego Valverde Medeiros
    • 3
  • Ericka Oliveira Cavalcanti Coni
    • 4
  • Camilo Moitinho Ferreira
    • 4
  • Beatrice Padovani Ferreira
    • 5
  • Ricardo de Souza Rosa
    • 6
  • Gilberto Menezes Amado-Filho
    • 7
  • Guilherme Henrique Pereira-Filho
    • 8
  • Rodrigo Leão de Moura
    • 9
  • Fabiano Lopes Thompson
    • 9
  • Paulo Yukio Gomes Sumida
    • 10
  • Ronaldo Bastos Francini-Filho
    • 11
  1. 1.Programa de Pós-Graduação em Oceanografia Biológica, Instituto OceanográficoUniversidade de São PauloSão PauloBrazil
  2. 2.Programa de Pós-Graduação em Ciências Biológicas (Zoologia)Universidade Federal da ParaíbaJoão PessoaBrazil
  3. 3.Programa de Pós-Graduação em Ecologia e Monitoramento AmbientalUniversidade Federal da ParaíbaRio TintoBrazil
  4. 4.Programa de Pós-Graduação em Ecologia e ConservaçãoUniversidade Estadual da ParaíbaCampina GrandeBrazil
  5. 5.Departamento de Oceanografia, Centro de Tecnologia e GeociênciasUniversidade Federal de PernambucoRecifeBrazil
  6. 6.Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da NaturezaUniversidade Federal da ParaíbaJoão PessoaBrazil
  7. 7.Instituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
  8. 8.Instituto do MarUniversidade Federal de São PauloSantosBrazil
  9. 9.Instituto de Biologia and SAGE/COPPEUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  10. 10.Departamento de Oceanografia Biológica, Instituto OceanográficoUniversidade de São PauloSão PauloBrazil
  11. 11.Departamento de Engenharia e Meio AmbienteUniversidade Federal da ParaíbaRio TintoBrazil

Personalised recommendations