Coral Reefs

, Volume 34, Issue 3, pp 887–897 | Cite as

Pervasive genetic structure at different geographic scales in the coral-excavating sponge Cliona vermifera (Hancock, 1867) in the Mexican Pacific

  • M. G. León-Pech
  • J. A. Cruz-Barraza
  • J. L. Carballo
  • L. E. Calderon-Aguilera
  • A. Rocha-Olivares


Clionavermifera is one of the most abundant excavating sponges in Mexican coral reefs, and represents a potential threat to their health. It appears to have limited dispersal potential, but, paradoxically, it is widespread over much of the 2000 km of Mexican Pacific waters, suggesting mechanisms of long-distance dissemination. Despite its ecological importance, nothing is known about its patterns of genetic structure and connectivity in space and time. In this study, we assess levels of genetic structure and test the hypothesis of limited dispersal and isolation by distance among coral reef systems in the Mexican Pacific. Genetic diversity levels were consistently low in DNA sequences from two mitochondrial genes and one nuclear gene; however, they revealed strong and significant genetic differentiation throughout the study region. Patterns of genetic differentiation from the slow-evolving mitochondrial, but not the nuclear, genes were geographic scale dependent. We found higher mitochondrial genetic similarity among localities at 10–100s km than at larger scales (100–1000s km). However, all samples were genetically differentiated at the nuclear locus, which is inconsistent with frequent long-distance dispersal. Significant isolation by distance is consistent with life history traits shared by boring sponges: a short larval period and larval philopatric behavior. The patterns of genetic differentiation in C. vermifera concur with those found in other sympatric coral species, and suggest the influence of community-wide ecological and genetic mechanisms on the genetic makeup of coral reef species in the Mexican Pacific. Fixed genetic differences suggest that the southern population of Oaxaca may be experiencing incipient speciation.


Excavating sponge Coral reefs Genetic structure Stepping stone 



This research was funded by CONACYT—SEMARNAT—INE Grant 023390 (awarded to L. E. C. A.), CONACYT-SEP 2008 (102239) (awarded to J. L. C.) and by IACOD IB200711-1 (awarded to J. A. C. B.). We thank SAGARPA for granting collecting permits (DGOPA.06648.140807.3121 and PPF/DGOPA-070/13). The first author benefited from a graduate fellowship from CONACYT to support her Ph.D. program in Marine Ecology at Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE). We gratefully acknowledge the team of collaborators along the tropical Mexican Pacific for their assistance in sample collection (ICMyL-UNAM, Mazatlán). We are grateful to Ivonne Martínez for assistance in experimental work, to Nancy Saavedra-Sotelo and Francesco Cicala for helpful discussions, to Gemma Franklin for a critical assessment of an earlier version of the manuscript, and to José Ma. Domínguez and Francisco J. Ponce for help with figure edition and composition. Two anonymous reviewers provided constructive remarks that helped improve our paper.


  1. Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693PubMedCentralPubMedCrossRefGoogle Scholar
  2. Barucca M, Azzini F, Bavestrello G, Biscotti MA, Calcinai B, Canapa A, Cerrano C, Olmo E (2007) The systematic position of some boring sponges (Demospongiae, Hadromerida) studied by molecular analysis. Mar Biol 151:529–535CrossRefGoogle Scholar
  3. Battershill CN, Bergquist PR (1990) The influence of storms on asexual reproduction, recruitment, and survivorship of sponges. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution, Washington, DC, pp 397–403Google Scholar
  4. Bautista-Guerrero E, Carballo JL, Maldonado M (2010) Reproductive cycle of the coral-excavating sponge Thoosa mismalolli (Clionaidae) from Mexican Pacific coral reefs. Invertebr Biol 129:285–296CrossRefGoogle Scholar
  5. Bautista-Guerrero E, Carballo JL, Maldonado M (2014) Abundance and reproductive patterns of the excavating sponge Cliona vermifera: a threat to Pacific coral reefs? Coral Reefs 33:259–266CrossRefGoogle Scholar
  6. Bautista-Guerrero E, Carballo JL, Cruz-Barraza JA, Nava HH (2006) New coral reef boring sponges (Hadromerida: Clionaidae) from the Mexican Pacific Ocean. J Mar Biol Assoc UK 86:963–970CrossRefGoogle Scholar
  7. Becking LE, Erpenbeck D, Peijnenburg KTCA, de Voogd NJ (2013) Phylogeography of the sponge Suberites diversicolor in Indonesia: Insights into the evolution of marine lake populations. Plos One 8:e75996PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bentlage B, Wörheide G (2007) Low genetic structuring among Pericharax heteroraphis (Porifera: Calcarea) populations from the Great Barrier Reef (Australia), revealed by analysis of nrDNA and nuclear intron sequences. Coral Reefs 26:807–816CrossRefGoogle Scholar
  9. Benzie JAH, Sandusky C, Wilkinson CR (1994) Genetic structure of dictyoceratid sponge populations on the western Coral Sea reefs. Mar Biol 119:335–345CrossRefGoogle Scholar
  10. Blanquer A, Uriz MJ (2010) Population genetics at three spatial scales of a rare sponge living in fragmented habitats. BMC Evol Biol 10:13PubMedCentralPubMedCrossRefGoogle Scholar
  11. Blanquer A, Uriz MJ, Caujape-Castells J (2009) Small-scale spatial genetic structure in Scopalina lophyropoda, an encrusting sponge with philopatric larval dispersal and frequent fission and fusion events. Mar Ecol Prog Ser 380:95–102CrossRefGoogle Scholar
  12. Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Hered 93:153–154PubMedCrossRefGoogle Scholar
  13. Carballo JL, Cruz-Barraza JA (2005) Cliona microstrongylata, a new species of boring sponge from the Sea of Cortes (Pacific Ocean, Mexico). Cah Biol Mar 46:379–387Google Scholar
  14. Carballo JL, Cruz-Barraza JA, Gomez P (2004) Taxonomy and description (Hadromerida, Clionaidae) from the Pacific Ocean of Mexico. Zool J Linn Soc 141:353–397CrossRefGoogle Scholar
  15. Carballo JL, Bautista-Guerrero E, Leyte-Morales GE (2008a) Boring sponges and the modeling of coral reefs in the east Pacific Ocean. Mar Ecol Prog Ser 356:113–122CrossRefGoogle Scholar
  16. Carballo JL, Cruz-Barraza JA, Nava H, Bautista-Guerrero E (2008b) Esponjas perforadoras de sustratos calcáreos: Importancia en los ecosistemas arrecifales del Pacífico Este. CONABIOGoogle Scholar
  17. Carballo JL, Aguilar-Camacho JM, Knapp IS, Bell JJ (2013a) Wide distributional range of marine sponges along the Pacific Ocean. Mar Biol Res 9:768–775CrossRefGoogle Scholar
  18. Carballo JL, Hepburn L, Nava HH, Cruz-Barraza JA, Bautista-Guerrero E (2007) Coral boring Aka-species (Porifera: Phloeodictyidae) from Mexico with description of Aka cryptica sp nov. J Mar Biol Assoc UK 87:1477–1484CrossRefGoogle Scholar
  19. Carballo JL, Bautista E, Nava H, Cruz-Barraza JA, Chavez JA (2013b) Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol Evol 3:872–886PubMedCentralPubMedCrossRefGoogle Scholar
  20. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  21. Chaves-Fonnegra A, Feldheim KA, Secord J, Lopez JV (2015) Population structure and dispersal of the coral-excavating sponge Cliona delitrix. Mol Ecol 24:1447–1466PubMedCrossRefGoogle Scholar
  22. Clarke KR, Gorley RN (2006) PRIMER v6: User manual/Tutorial. PRIMER-E, PlymouthGoogle Scholar
  23. Cruz-Barraza JA, Carballo JL, Bautista-Guerrero E, Nava H (2011) New species of excavating sponges (Porifera: Demospongiae) on coral reefs from the Mexican Pacific Ocean. J Mar Biol Assoc UK 91:999–1013CrossRefGoogle Scholar
  24. Cruz-Barraza JA, Carballo JL, Rocha-Olivares A, Ehrlich H, Hog M (2012) Integrative taxonomy and molecular phylogeny of genus Aplysina (Demospongiae: Verongida) from Mexican Pacific. PLoS One 7:e42049PubMedCentralPubMedCrossRefGoogle Scholar
  25. Dailianis T, Tsigenopoulos CS, Dounas C, Voultsiadou E (2011) Genetic diversity of the imperilled bath sponge Spongia officinalis Linnaeus, 1759 across the Mediterranean Sea: patterns of population differentiation and implications for taxonomy and conservation. Mol Ecol 20:3757–3772PubMedCrossRefGoogle Scholar
  26. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772PubMedCrossRefGoogle Scholar
  27. DeBiasse MB, Richards VP, Shivji MS (2010) Genetic assessment of connectivity in the common reef sponge, Callyspongia vaginalis (Demospongiae: Haplosclerida) reveals high population structure along the Florida reef tract. Coral Reefs 29:47–55CrossRefGoogle Scholar
  28. Duran S, Rutzler K (2006) Ecological speciation in a Caribbean marine sponge. Mol Phylogenet Evol 40:292–297PubMedCrossRefGoogle Scholar
  29. Duran S, Giribet G, Turon X (2004a) Phylogeographical history of the sponge Crambe crambe (Porifera, Poecilosclerida): range expansion and recent invasion of the Macaronesian islands from the Mediterranean Sea. Mol Ecol 13:109–122PubMedCrossRefGoogle Scholar
  30. Duran S, Pascual M, Turon X (2004b) Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Mar Biol 144:31–35CrossRefGoogle Scholar
  31. Duran S, Pascual M, Estoup A, Turon X (2004c) Strong population structure in the marine sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Mol Ecol 13:511–522PubMedCrossRefGoogle Scholar
  32. Escobar D, Zea S, Sanchez JA (2012) Phylogenetic relationships among the Caribbean members of the Cliona viridis complex (Porifera, Demospongiae, Hadromerida) using nuclear and mitochondrial DNA sequences. Mol Phylogenet Evol 64:271–284PubMedCrossRefGoogle Scholar
  33. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolut Bioinform Online 1:47–50Google Scholar
  34. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek RC (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  35. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  36. Hansen MC, Tolker-Nielsen T, Givskov M, Molin S (1998) Biased 16S rDNA PCR amplification caused by interference from DNA flanking the template region. Fems Microbiol Ecol 26:141–149CrossRefGoogle Scholar
  37. Lôbo-Hajdu G, Guimarães A (2004) Intragenomic, intra and interspecific variation in the rDNA ITS of Porifera revealed by PCR-Single-Strand conformation polymorphism (PCR-SSCP). Bollettino dei Musei e Degli Istituti Biologici dell’Università di Genova 68:413–423Google Scholar
  38. López-Legentil S, Pawlik JR (2009) Genetic structure of the Caribbean giant barrel sponge Xestospongia muta using the I3-M11 partition of COI. Coral Reefs 28:157–165CrossRefGoogle Scholar
  39. Maldonado M (2006) The ecology of the sponge larva. Can J Zool 84:175–194CrossRefGoogle Scholar
  40. Mariani S, Uriz MJ, Turon X (2000) Larval bloom of the oviparous sponge Cliona viridis: coupling of larval abundance and adult distribution. Mar Biol 137:783–790CrossRefGoogle Scholar
  41. Mariani S, Piscitelli MP, Uriz MJ (2001) Temporal and spatial co-occurrence in spawning and larval release of Cliona viridis (Porifera: Hadromerida). J Mar Biol Assoc U K 81:565–567Google Scholar
  42. Nava H, Carballo JL (2008) Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. J Exp Biol 211:2827–2831PubMedCrossRefGoogle Scholar
  43. Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New YorkGoogle Scholar
  44. Noyer C, Becerro MA (2012) Relationship between genetic, chemical, and bacterial diversity in the Atlanto-Mediterranean bath sponge Spongia lamella. Hydrobiologia 687:85–99CrossRefGoogle Scholar
  45. Reyes-Bonilla H, López-Pérez A (1998) Biogeography of the stony corals (Scleractinia) of the Mexican Pacific. Cienc Mar 24:211–224Google Scholar
  46. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  47. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  48. Rua CPJ, Zilberberg C, Sole-Cava AM (2011) New polymorphic mitochondrial markers for sponge phylogeography. J Mar Biol Assoc UK 91:1015–1022CrossRefGoogle Scholar
  49. Saavedra-Sotelo NC, Calderón-Aguilera LE, Reyes-Bonilla H, López-Pérez RA, Medina-Rosas P, Rocha-Olivares A (2011) Limited genetic connectivity of Pavona gigantea in the Mexican Pacific. Coral Reefs 30:677–686CrossRefGoogle Scholar
  50. Saavedra-Sotelo NC, Calderón-Aguilera LE, Reyes-Bonilla H, López-Pérez RA, Cupul-Magaña A, Cruz-Barraza JA, Paz-García D, Rocha-Olivares A (2013) Testing the genetic predictions of a biogeographical model in a dominant endemic Eastern Pacific coral (Porites panamensis) using a genetic seascape approach. Ecol Evol 3:4070–4091PubMedCentralPubMedCrossRefGoogle Scholar
  51. Schönberg C, Ortiz J (2008) Is sponge bioerosion increasing? P 11th Int Coral Reef Symp 16:520–523Google Scholar
  52. Solé-Cava AM, Boury-Esnault N (1999) Inter intraspecif differences sponges. Memoirs of the Queensland Museum 44:591–601Google Scholar
  53. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  54. Thiel M, Haye P (2006) The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences. Oceanogr Mar Biol Annu Rev 44:323–429Google Scholar
  55. Uriz MJ, Turon X (2012) Sponge ecology in the molecular era. Advances in Sponge Science: Phylogeny, Systematics, Ecology 61:345–410Google Scholar
  56. Uriz MJ, Turon X, Mariani S (2008) Ultrastructure and dispersal potential of sponge larvae: tufted versus evenly ciliated parenchymellae. Mar Ecol Evol Persp 29:280–297CrossRefGoogle Scholar
  57. Uriz MJ, Maldonado M, Turon X, Marti R (1998) How do reproductive output, larval behaviour, and recruitment contribute to adult spatial patterns in Mediterranean encrusting sponges? Mar Ecol Prog Ser 167:137–148CrossRefGoogle Scholar
  58. Whalan S, Johnson MS, Harvey E, Battershill C (2005) Mode of reproduction, recruitment, and genetic subdivision in the brooding sponge Haliclona sp. Mar Biol 146:425–433CrossRefGoogle Scholar
  59. White TJ, Bruns T, Lee S, Taylor WJ (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Snninsky JJ, White TJ (eds) PCR protocols: A guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  60. Wisshak M, Schonberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS One 7:e45124PubMedCentralPubMedCrossRefGoogle Scholar
  61. Wörheide G (2006) Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar Biol 148:907–912CrossRefGoogle Scholar
  62. Wörheide G, Nichols SA, Goldberg J (2004) Intragenomic variation of the rDNA internal transcribed spacers in sponges (Phylum Porifera): implications for phylogenetic studies. Mol Phylogenet Evol 33:816–830PubMedCrossRefGoogle Scholar
  63. Wörheide G, Epp LS, Macis L (2008) Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): Founder effects, vicariance, or both? BMC Evol Biol 8:24PubMedCentralPubMedCrossRefGoogle Scholar
  64. Xavier JR, van Soest RWM, Breeuwer JAJ, Martins AMF, Menken SBJ (2010a) Phylogeography, genetic diversity and structure of the poecilosclerid sponge Phorbas fictitius at oceanic islands. Contrib Zool 79:119–129Google Scholar
  65. Xavier JR, Rachello-Dolmen PG, Parra-Velandia F, Schonberg CHL, Breeuwer JAJ, van Soest RWM (2010b) Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Mol Phylogenet Evol 56:13–20PubMedCrossRefGoogle Scholar
  66. Zhang ZL, Huang K, Zhang YY, Liu NJ, Yang KY (1994) Interference by Complex Structures of Target DNA with Specific PCR Amplification. Appl Biochem Biotech 44:15–20CrossRefGoogle Scholar
  67. Zilberberg C, Maldonado M, Solé-Cava AM (2006) Assessment of the relative contribution of asexual propagation in a population of the coral-excavating sponge Cliona delitrix from the Bahamas. Coral Reefs 25:297–301CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Molecular Ecology Laboratory, Biological Oceanography DepartmentCICESEEnsenadaMexico
  2. 2.Institute of Marine Sciences and LimnologyUniversidad Nacional Autónoma de México (Unidad Académica Mazatlan)MazatlánMexico
  3. 3.Fisheries and Coastal Ecology Laboratory, Marine Ecology DepartmentCICESEEnsenadaMexico

Personalised recommendations