Advertisement

Coral Reefs

, Volume 34, Issue 3, pp 759–770 | Cite as

Monthly variability of self-recruitment for a coral reef damselfish

  • Marion Cuif
  • David M. Kaplan
  • Cécile Fauvelot
  • Christophe Lett
  • Laurent Vigliola
Report

Abstract

Understanding the dynamics of marine populations is critical to managing marine systems effectively and requires information on patterns of population dispersal and connectivity that are still poorly known. We used transgenerational marking to study larval dispersal of the humbug damselfish, Dascyllus aruanus, in the patchy reef seascape of the southwest Lagoon of New Caledonia (SWL), southwest tropical pacific. The adult population of a patch reef located in the central part of the SWL was injected repeatedly with an enriched 137Ba solution to ensure mass production of marked larvae over two successive reproductive seasons. Multiple cohorts of newly settled larvae were sampled, and their otolith core was analyzed by laser ablation inductively coupled plasma mass spectrometry to assess the seasonal and interannual variability of self-recruitment at the central reef. Connectivity between this reef and ten neighboring reefs was also estimated. Analysis of >1200 settlers indicated that self-recruitment varied significantly between months (ranging from 0 to 68 %) and years (21 % in 2011 and 0 % in 2012). However, variable self-recruitment did not always correspond to variable numbers of self-recruits. Therefore, whereas self-recruitment is undoubtedly a good indication of the degree of population openness, it may not indicate local population persistence. Finally, being the first self-recruitment study to include such a large number of settlers, our study reveals that the threshold used to determine marked individuals significantly affects perceived self-recruitment and connectivity rates and, therefore, must be carefully chosen.

Keywords

Dascyllus aruanus Transgenerational marking Otolith Self-recruitment Larval dispersal Connectivity 

Notes

Acknowledgments

We thank G. Mou-Tham, J. Tiavouane, D. Grulois, the staff of the scuba diving service, and boat drivers of IRD for assistance with field work, J. Baly, E. Dabas, M. Labonne, G. Lecroizier, J. M. Munaron, and M. Vannereau for assistance with otolith preparation, L. Jamet for assistance with preparation of enriched Barium isotope solution, and F. Foti and the RIEL team of Charles Darwin University for assistance with LA-ICP-MS. We thank D. Starrs and an anonymous reviewer for helpful comments that improved the manuscript. Funding was provided by the COMPO project (Connectivity Of Marine POpulations, www.compo.ird.fr) through a grant from the French National Research Agency (ANR) # 2010 JCJC 1701 01. Ethics and sampling approvals were provided by the Direction du Service de l’Environnement de la Province Sud de Nouvelle-Calédonie, arrêté # 3117-2011/ARR/DENV. This is contribution number 3453 of the Virginia Institute of Marine Science, College of William and Mary.

Supplementary material

338_2015_1300_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1838 kb)
338_2015_1300_MOESM2_ESM.avi (184 mb)
Supplementary material 2 (AVI 188424 kb)

References

  1. Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744PubMedCrossRefGoogle Scholar
  2. Beldade R, Holbrook SJ, Schmitt RJ, Planes S, Malone D, Bernardi G (2012) Larger female fish contribute disproportionately more to self-replenishment. Proc R Soc B 279:2116–2121PubMedCentralPubMedCrossRefGoogle Scholar
  3. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188Google Scholar
  4. Berglund M, Wieser ME (2011) Isotopic compositions of the elements 2009 (IUPAC Technical Report). Pure Appl Chem 83:397–410Google Scholar
  5. Berumen ML, Almany GR, Planes S, Jones GP, Saenz-Agudelo P, Thorrold SR (2012) Persistence of self-recruitment and patterns of larval connectivity in a marine protected area network. Ecol Evol 2:444–452PubMedCentralPubMedCrossRefGoogle Scholar
  6. Berumen ML, Walsh HJ, Raventos N, Planes S, Jones GP, Starczak V, Thorrold SR (2010) Otolith geochemistry does not reflect dispersal history of clownfish larvae. Coral Reefs 29:883–891CrossRefGoogle Scholar
  7. Botsford LW, White J, Coffroth M, Paris CB, Planes S, Shearer T, Thorrold SR, Jones GP (2009) Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs. Coral Reefs 28:327–337PubMedCentralPubMedCrossRefGoogle Scholar
  8. Brophy D, Jeffries TE, Danilowicz BS (2004) Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Mar Biol 144:779–786CrossRefGoogle Scholar
  9. Burgess SC, Nickols KJ, Griesemer CD, Barnett LAK, Dedrick AG, Satterthwaite EV, Yamane L, Morgan SG, White JW, Botsford LW (2014) Beyond connectivity: how empirical methods can quantify population persistence to improve marine protected-area design. Ecol Appl 24:257–270PubMedCrossRefGoogle Scholar
  10. Buston PM, Fauvelot C, Wong MYL, Planes S (2009) Genetic relatedness in groups of the humbug damselfish Dascyllus aruanus: small, similar-sized individuals may be close kin. Mol Ecol 18:4707–4715PubMedCrossRefGoogle Scholar
  11. Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst 27:477–500CrossRefGoogle Scholar
  12. Carreras-Carbonell J, Macpherson E, Pascual M (2007) High self-recruitment levels in a Mediterranean littoral fish population revealed by microsatellite markers. Mar Biol 151:719–727CrossRefGoogle Scholar
  13. Carson HS, Lopez-Duarte PC, Rasmussen L, Wang D, Levin LA (2010) Reproductive timing alters population connectivity in marine metapopulations. Curr Biol 20:1926–1931PubMedCrossRefGoogle Scholar
  14. Chittaro PM, Hogan JD (2013) Patterns of connectivity among populations of a coral reef fish. Coral Reefs 32:341–354CrossRefGoogle Scholar
  15. Christie MR, Tennessen JA, Blouin MS (2013) Bayesian parentage analysis with systematic accountability of genotyping error, missing data and false matching. Bioinformatics 29:725–732PubMedCrossRefGoogle Scholar
  16. Cook GS, Parnell PE, Levin LA (2014) Population connectivity shifts at high frequency within an open-coast marine protected area network. PLoS One 9:e103654PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cuif M, Keller F, Château O, Kaplan DM, Labonne M, Lett C, Vigliola L (2014a) Evaluation of transgenerational isotope labeling of embryonic otoliths in a coral reef damselfish with single and repeated injections of enriched 137Barium. J Exp Mar Biol Ecol 459:151–159CrossRefGoogle Scholar
  18. Cuif M, Kaplan DM, Lefèvre J, Faure VM, Caillaud M, Verley P, Vigliola L, Lett C (2014b) Wind-induced variability in larval retention in a coral reef system: a biophysical modelling study in the South-West Lagoon of New Caledonia. Prog Oceanogr 122:105–115CrossRefGoogle Scholar
  19. D’Aloia CC, Bogdanowicz SM, Majoris JE, Harrison RG, Buston PM (2013) Self-recruitment in a Caribbean reef fish: a method for approximating dispersal kernels accounting for seascape. Mol Ecol 22:2563–2572PubMedCrossRefGoogle Scholar
  20. Douillet P (1998) Tidal dynamics of the south-west lagoon of New Caledonia. Oceanol Acta 21:69–79CrossRefGoogle Scholar
  21. Fricke HW, Holzberg S (1974) Social units and hermaphroditism in a pomacentrid fish. Naturwissenschaften 61:367–368CrossRefGoogle Scholar
  22. Gerlach G, Atema J, Kingsford MJ, Black KP, Vanessa MS (2007) Smelling home can prevent dispersal of reef fish larvae. Proc Natl Acad Sci USA 104:858–863PubMedCentralPubMedCrossRefGoogle Scholar
  23. Harrison HB, Saenz-Agudelo P, Planes S, Jones GP, Berumen ML (2013a) Relative accuracy of three common methods of parentage analysis in natural populations. Mol Ecol 22:1158–1170PubMedCrossRefGoogle Scholar
  24. Harrison HB, Saenz-Agudelo P, Planes S, Jones GP, Berumen ML (2013b) On minimizing assignment errors and the trade-off between false positives and negatives in parentage analysis. Mol Ecol 22:5738–5742PubMedCrossRefGoogle Scholar
  25. Harrison HB, Williamson DH, Evans RD, Almany GR, Thorrold SR, Russ GR, Feldheim KA, Van Herwerden L, Planes S, Srinivasan M (2012) Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biol 22:1023–1028PubMedCrossRefGoogle Scholar
  26. Hixon MA, Pacala SW, Sandin SA (2002) Population regulation: historical context and contemporary challenges of open vs. closed systems. Ecology 83:1490–1508CrossRefGoogle Scholar
  27. Hobbs JA, Castillo G, Tigan G, Lindberg J, Ikemiyagi N, Ramos G (2012) Tagging the next generation: validation of trans-generational chemical tagging for an endangered fish. Environ Biol Fishes 95:463–468CrossRefGoogle Scholar
  28. Hogan J, Thiessen R, Sale PF, Heath D (2012) Local retention, dispersal and fluctuating connectivity among populations of a coral reef fish. Oecologia 168:61–71PubMedCrossRefGoogle Scholar
  29. Holbrook SJ, Forrester GE, Schmitt RJ (2000) Spatial patterns in abundance of a damselfish reflect availability of suitable habitat. Oecologia 122:109–120CrossRefGoogle Scholar
  30. Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15:1314–1318PubMedCrossRefGoogle Scholar
  31. Jones GP, Milicich MJ, Emslie MJ, Lunow C (1999) Self-recruitment in a coral reef fish population. Nature 402:802–804CrossRefGoogle Scholar
  32. Jones GP, Almany GR, Russ GR, Sale PF, Steneck RS, Oppen MJH, Willis BL (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28:307–325CrossRefGoogle Scholar
  33. Leis JM, Van Herwerden L, Patterson HM (2011) Estimating connectivity in marine fish populations: what works best. In: Gibson RN, Atkinson RJA, Gordon JDM (eds) Oceanography and marine biology: an annual review 49:193–234Google Scholar
  34. Lett C, Nguyen-Huu T, Cuif M, Saenz-Agudelo P, Kaplan D (2015) Linking local retention, self-recruitment and persistence in marine metapopulations. Ecology. doi: 10.1890/14-1305.1 Google Scholar
  35. Macdonald JI, Shelley JMG, Crook DA (2008) A method for improving the estimation of natal chemical signatures in otoliths. Trans Am Fish Soc 137:1674–1682CrossRefGoogle Scholar
  36. Madduppa HH, Timm J, Kochzius M (2014) Interspecific, spatial and temporal variability of self-recruitment in Anemonefishes. PLoS One 9:e90648PubMedCentralPubMedCrossRefGoogle Scholar
  37. Munro AR, Gillanders BM, Thurstan S, Crook DA, Sanger AC (2009) Transgenerational marking of freshwater fishes with enriched stable isotopes: a tool for fisheries management and research. J Fish Biol 75:668–684PubMedCrossRefGoogle Scholar
  38. Ouillon S, Douillet P, Lefebvre JP, Le Gendre R, Jouon A, Bonneton P, Fernandez JM, Chevillon C, Magand O, Lefèvre J, Le Hir P, Laganier R, Dumas F, Marchesiello P, Bel Madani A, Andréfouët S, Panché JY, Fichez R (2010) Circulation and suspended sediment transport in a coral reef lagoon: the south-west lagoon of New Caledonia. Mar Pollut Bull 61:269–296PubMedCrossRefGoogle Scholar
  39. Pinsky ML, Palumbi SR, Andréfouët S, Purkis SJ (2012) Open and closed seascapes: where does habitat patchiness create populations with high fractions of self-recruitment? Ecol Appl 22:1257–1267PubMedCrossRefGoogle Scholar
  40. Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci USA 106:5693–5697PubMedCentralPubMedCrossRefGoogle Scholar
  41. Pusack TJ, Christie MR, Johnson DW, Stallings CD, Hixon MA (2014) Spatial and temporal patterns of larval dispersal in a coral-reef fish metapopulation: evidence of variable reproductive success. Mol Ecol 23:3396–3408PubMedCrossRefGoogle Scholar
  42. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/
  43. Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S (2012) Patterns and persistence of larval retention and connectivity in a marine fish metapopulation. Mol Ecol 21:4695–4705PubMedCrossRefGoogle Scholar
  44. Sale PF, Cowen RK, Danilowicz BS, Jones GP, Kritzer JP, Lindeman KC, Planes S, Polunin NVC, Russ GR, Sadovy YJ, Steneck RS (2005) Critical science gaps impede use of no-take fishery reserves. Trends Ecol Evol 20:74–80PubMedCrossRefGoogle Scholar
  45. Schunter C, Pascual M, Garza JC, Raventos N, Macpherson E (2014) Kinship analyses identify fish dispersal events on a temperate coastline. Proc R Soc B 281:20140556PubMedCentralPubMedCrossRefGoogle Scholar
  46. Sinclair DJ, Kinsley LPJ, McCulloch MT (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta 62:1889–1901CrossRefGoogle Scholar
  47. Sponaugle S, Cowen RK, Shanks A, Morgan SG, Leis JM, Pineda J, Boehlert GW, Kingsford MJ, Lindeman KC, Grimes C, Munro JL (2002) Predicting self-recruitment in marine populations: biophysical correlates and mechanisms. Bull Mar Sci 70:341–375Google Scholar
  48. Starrs D, Davis JT, Schlaefer J, Ebner BC, Eggins SM, Fulton CJ (2014) Maternally transmitted isotopes and their effects on larval fish: a validation of dual isotopic marks within a meta-analysis context. Can J Fish Aquat Sci 71:387–397CrossRefGoogle Scholar
  49. Thorrold SR, Latkoczy C, Swart PK, Jones CM (2001) Natal homing in a marine fish metapopulation. Science 291:297–299PubMedCrossRefGoogle Scholar
  50. Thorrold SR, Jones GP, Planes S, Hare JA (2006) Transgenerational marking of embryonic otoliths in marine fishes using barium stable isotopes. Can J Fish Aquat Sci 63:1193–1197CrossRefGoogle Scholar
  51. Tukey JW (1977) Exploratory data analysis. Addison-Wesley. p 688Google Scholar
  52. Williamson DH, Jones GP, Thorrold SR (2009) An experimental evaluation of transgenerational isotope labeling in a coral reef grouper. Mar Biol 56:2517–2525CrossRefGoogle Scholar
  53. Wilson DT, McCormick MI (1999) Microstructure of settlement-marks in the otoliths of tropical reef fishes. Mar Biol 134:29–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marion Cuif
    • 1
    • 2
    • 3
    • 4
  • David M. Kaplan
    • 3
    • 5
  • Cécile Fauvelot
    • 2
  • Christophe Lett
    • 1
  • Laurent Vigliola
    • 2
  1. 1.Institut de Recherche pour le Développement (IRD), UMI 209 UPMC UMMISCOCentre de Recherche Halieutique Méditerranéenne et TropicaleSète CedexFrance
  2. 2.Institut de Recherche pour le Développement (IRD), Laboratoire d’Excellence LABEX CorailUMR 9220 ENTROPIENouméa CedexFrance
  3. 3.Institut de Recherche pour le Développement (IRD), UMR 212 EMECentre de Recherche Halieutique Méditerranéenne et TropicaleSète CedexFrance
  4. 4.AgroParisTechParisFrance
  5. 5.Virginia Institute of Marine ScienceCollege of William & MaryGloucester PointUSA

Personalised recommendations