Advertisement

Coral Reefs

, Volume 34, Issue 2, pp 655–662 | Cite as

Visualization of coral host–pathogen interactions using a stable GFP-labeled Vibrio coralliilyticus strain

  • F. Joseph Pollock
  • Cory J. Krediet
  • Melissa Garren
  • Roman Stocker
  • Karina Winn
  • Bryan Wilson
  • Carla Huete-Stauffer
  • Bette L. Willis
  • David G. BourneEmail author
Report

Abstract

The bacterium Vibrio coralliilyticus has been implicated as the causative agent of coral tissue loss diseases (collectively known as white syndromes) at sites across the Indo-Pacific and represents an emerging model pathogen for understanding the mechanisms linking bacterial infection and coral disease. In this study, we used a mini-Tn7 transposon delivery system to chromosomally label a strain of V. coralliilyticus isolated from a white syndrome disease lesion with a green fluorescent protein gene (GFP). We then tested the utility of this modified strain as a research tool for studies of coral host–pathogen interactions. A suite of biochemical assays and experimental infection trials in a range of model organisms confirmed that insertion of the GFP gene did not interfere with the labeled strain’s virulence. Using epifluorescence video microscopy, the GFP-labeled strain could be reliably distinguished from non-labeled bacteria present in the coral holobiont, and the pathogen’s interactions with the coral host could be visualized in real time. This study demonstrates that chromosomal GFP labeling is a useful technique for visualization and tracking of coral pathogens and provides a novel tool to investigate the role of V. coralliilyticus in coral disease pathogenesis.

Keywords

Vibrio coralliilyticus Green fluorescent protein Coral disease Host–pathogen interactions Pathogens Bacteria 

Notes

Acknowledgments

The authors acknowledge Lone Hoj, Evan Goulden, and Rebecca Schilling for their advice and assistance. This work was partially supported by a Human Frontiers in Science Program Award (No. RGY0089RS) to RS.

Supplementary material

338_2015_1273_MOESM1_ESM.mp4 (10.8 mb)
Video S1. Direct visualization of host–pathogen interactions showing time-lapse projections of a Pocillopora damicornis coral with inoculated, non-labeled Vibrio coralliilyticus cells. Imaging occurred under bright field GFP fluorescence. Scale bar denotes 25 μm. Link: http://youtu.be/UcVgdYZNKJM (MP4 11045 kb)
338_2015_1273_MOESM2_ESM.mp4 (10.1 mb)
Video S2. Direct visualization of host/pathogen interactions showing time-lapse projections of a Pocillopora damicornis coral with inoculated, non-labeled Vibrio coralliilyticus cells. Imaging occurred under GFP fluorescence. Scale bar denotes 25 μm. Link: http://youtu.be/oprFuXg_KXk (MP4 10323 kb)

Video S3. Direct visualization of host/pathogen interactions showing time-lapse projections of a Pocillopora damicornis coral with inoculated GFP-labeled V. coralliilyticus cells. Imaging occurred under GFP fluorescence. Scale bar denotes 25 μm. Link: http://youtu.be/GhtOHIohalY (MP4 1874 kb)

Video S4. Direct visualization of host/pathogen interactions showing z-stack projections of a Pocillopora damicornis coral with inoculated, non-labeled Vibrio coralliilyticus cells. Imaging occurred under bright field fluorescence. Scale bar denotes 25 μm. Link: http://youtu.be/kVJ4_vd4B8w (MP4 84 kb)

Video S5. Direct visualization of host/pathogen interactions showing z-stack projections of a Pocillopora damicornis coral with inoculated, non-labeled V. coralliilyticus cells. Imaging occurred under GFP fluorescence. Scale bar denotes 25 μm. Link: http://youtu.be/j2VgvDN8Aq4 (MP4 144 kb)

Video S6. Direct visualization of host/pathogen interactions showing z-stack projections of a Pocillopora damicornis coral with inoculated GFP-labeled V. coralliilyticus cells. Imaging occurred under GFP fluorescence. Scale bar denotes 25 μm. Link: http://youtu.be/49Cha3rbFQY (MP4 42 kb)

References

  1. Abrego D, Ulstrup KE, Willis BL, van Oppen MJ (2008) Species–specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc B Biol Sci 275:2273–2282CrossRefGoogle Scholar
  2. Bao Y, Lies DP, Fu H, Roberts GP (1991) An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene 109:167–168CrossRefPubMedGoogle Scholar
  3. Ben-Haim Y, Rosenberg E (2002) A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Mar Biol 141:47–55CrossRefGoogle Scholar
  4. Ben-Haim Y, Thompson FL, Thompson CC, Cnockaert MC, Hoste B, Swings J, Rosenberg E (2003) Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 53:309–315CrossRefPubMedGoogle Scholar
  5. Bourne DG, Garren M, Work TM, Rosenberg E, Smith GW, Harvell CD (2009) Microbial disease and the coral holobiont. Trends Microbiol 17:554–562CrossRefPubMedGoogle Scholar
  6. Brewster JD (2003) A simple micro-growth assay for enumerating bacteria. J Microbiol Methods 53:77–86CrossRefPubMedGoogle Scholar
  7. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805CrossRefPubMedGoogle Scholar
  8. Cohen Y, Pollock FJ, Rosenberg E, Bourne DG (2013) Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. Microbiologyopen 2:64–74CrossRefPubMedCentralPubMedGoogle Scholar
  9. Dunn AK, Millikan DS, Adin DM, Bose JL, Stabb EV (2006) New rfp-and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl Environ Microbiol 72:802–810CrossRefPubMedCentralPubMedGoogle Scholar
  10. Errampalli D, Leung K, Cassidy MB, Kostrzynska M, Blears M, Lee H, Trevors JT (1999) Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J Microbiol Methods 35:187–199CrossRefPubMedGoogle Scholar
  11. Garren M, Son K, Raina J-B, Rusconi R, Menolascina F, Shapiro OH, Tout J, Bourne DG, Seymour JR, Stocker R (2014) A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J 8:999–1007CrossRefPubMedCentralPubMedGoogle Scholar
  12. Guillard R, Ryther J (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea. Can J Microbiol 8:229–239CrossRefPubMedGoogle Scholar
  13. Kimes NE, Grim CJ, Johnson WR, Hasan NA, Tall BD, Kothary MH, Kiss H, Munk AC, Tapia R, Green L et al (2011) Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J 6:835–846CrossRefPubMedCentralPubMedGoogle Scholar
  14. Lambertsen L, Sternberg C, Molin S (2004) Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6:726–732CrossRefPubMedGoogle Scholar
  15. Lichtenstein C, Brenner S (1981) Site-specific properties of Tn7 transposition into the E. coli chromosome. Mol Gen Genet 183:380–387CrossRefPubMedGoogle Scholar
  16. Ling SH, Wang XH, Lim TM, Leung KY (2001) Green fluorescent protein-tagged Edwardsiella tarda reveals portal of entry in fish. FEMS Microbiol Lett 194:239–243CrossRefPubMedGoogle Scholar
  17. Littman RA, Bourne DG, Willis BL (2010) Responses of coral-associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host. Mol Ecol 19:1978–1990CrossRefPubMedGoogle Scholar
  18. Meron D, Efrony R, Johnson WR, Schaefer AL, Morris PJ, Rosenberg E, Greenberg EP, Banin E (2009) Role of flagella in virulence of the coral pathogen Vibrio coralliilyticus. Appl Env Microbiol 75:5704–5707CrossRefGoogle Scholar
  19. Pollock FJ, Morris PJ, Willis BL, Bourne DG (2011) The urgent need for robust coral disease diagnostics. PLoS Pathog 7:e1002183CrossRefPubMedCentralPubMedGoogle Scholar
  20. Pollock FJ, Wilson B, Johnson WR, Morris PJ, Willis BL, Bourne DG (2010) Phylogeny of the cosmopolitan coral pathogen Vibrio coralliilyticus. Env Microbiol Rep 2:172–178CrossRefGoogle Scholar
  21. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233CrossRefPubMedGoogle Scholar
  22. Sawabe T, Fukui Y, Stabb EV (2006) Simple conjugation and outgrowth procedures for tagging vibrios with GFP, and factors affecting the stable expression of the gfp tag. Lett Appl Microbiol 43:514–522CrossRefPubMedGoogle Scholar
  23. Shapiro OH, Fernandez VI, Garren MS, Guasto JS, Debaillon-Vesque FP, Kramarski-Winter E, Vardi A, Stocker R (2014) Vortical ciliary flows actively enhance mass transport in reef corals. Proc Natl Acad Sci 111:13391–13396CrossRefPubMedCentralPubMedGoogle Scholar
  24. StatSoft Inc. (2013) STATISTICA (data analysis software system), version 12. Tulsa, USA www.statsoft.com
  25. Sussman M, Willis BL, Victor S, Bourne DG (2008) Coral pathogens identified for White Syndrome (WS) epizootics in the Indo-Pacific. PLoS One 3:e2393CrossRefPubMedCentralPubMedGoogle Scholar
  26. Sussman M, Mieog JC, Doyle J, Victor S, Willis BL, Bourne DG (2009) Vibrio zinc-metalloprotease causes photoinactivation of coral endosymbionts and coral tissue lesions. PLoS One 4:e4511CrossRefPubMedCentralPubMedGoogle Scholar
  27. Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB, Swings J (2005) Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Env Microbiol 71:5107–5115CrossRefGoogle Scholar
  28. Ushijima B, Videau P, Burger AH, Shore-Maggio A, Runyon CM, Sudek M, Aeby GS, Callahan SM (2014) Vibrio coralliilyticus Strain OCN008 is an etiological agent of acute Montipora White Syndrome. Appl Environ Microbiol 80:2102–2109CrossRefPubMedCentralPubMedGoogle Scholar
  29. Valdivia RH, Hromockyj AE, Monack D, Ramakrishnan L, Falkow S (1996) Applications for green fluorescent protein (GFP) in the study of host pathogen interactions. Gene 173:47–52CrossRefPubMedGoogle Scholar
  30. Vidal-Dupiol J, Ladrière O, Meistertzheim A-L, Fouré L, Adjeroud M, Mitta G (2011) Physiological responses of the scleractinian coral Pocillopora damicornis to bacterial stress from Vibrio coralliilyticus. J Exp Biol 214:1533–1545CrossRefPubMedGoogle Scholar
  31. Vizcaino MI, Johnson WR, Kimes NE, Williams K, Torralba M, Nelson KE, Smith GW, Weil E, Moeller PD, Morris PJ (2010) Antimicrobial resistance of the coral pathogen Vibrio coralliilyticus and Caribbean sister phylotypes isolated from a diseased octocoral. Microb Ecol 59:646–657CrossRefPubMedGoogle Scholar
  32. Weis VM, Davy SK, Hoegh-Guldberg O, Rodriguez-Lanetty M, Pringle JR (2008) Cell biology in model systems as the key to understanding corals. Trends Ecol Evol 23:369–376CrossRefPubMedGoogle Scholar
  33. Windle HJ, Kelleher D (1997) Identification and characterization of a metalloprotease activity from Helicobacter pylori. Infect Immun 65:3132–3137PubMedCentralPubMedGoogle Scholar
  34. Work T, Meteyer C (2014) To understand coral disease, look at coral cells. EcoHealth. doi: 10.1007/s10393-014-0931-1:1-9 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • F. Joseph Pollock
    • 1
    • 2
    • 3
  • Cory J. Krediet
    • 1
    • 4
    • 5
  • Melissa Garren
    • 6
  • Roman Stocker
    • 6
  • Karina Winn
    • 1
  • Bryan Wilson
    • 1
  • Carla Huete-Stauffer
    • 1
    • 7
  • Bette L. Willis
    • 3
  • David G. Bourne
    • 1
    Email author
  1. 1.Australian Institute of Marine ScienceTownsvilleAustralia
  2. 2.AIMS@JCU, Australian Institute of Marine ScienceJames Cook UniversityTownsvilleAustralia
  3. 3.ARC Centre of Excellence for Coral Reef Studies, College of Marine and Environmental SciencesJames Cook UniversityTownsvilleAustralia
  4. 4.Interdisciplinary Ecology ProgramUniversity of Florida-IFASGainesvilleUSA
  5. 5.Department of GeneticsStanford University School of MedicineStanfordUSA
  6. 6.Ralph M. Parsons Laboratory, Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  7. 7.Dipartimento di Science della Terra, dell’Ambiente e della VitaUniversity of GenoaGenoaItaly

Personalised recommendations