Coral Reefs

, Volume 34, Issue 2, pp 505–515 | Cite as

Using demographic models to project the effects of climate change on scleractinian corals: Pocillopora damicornis as a case study

  • L. BramantiEmail author
  • M. Iannelli
  • T. Y. Fan
  • P. J. Edmunds


Using empirical analyses of the effects of global climate change (GCC) and ocean acidification (OA) on the survival and calcification of early life stages of Pocillopora damicornis, we employed a demographic approach to forecast the consequences of GCC and OA on the population dynamics of this coral. We constructed a size-based demographic model using life-history tables and transition probabilities for a population in Southern Taiwan, and projected the population structure over ~100 yr under scenarios of warming and acidification. The simulations incorporated stochastic variability of the parameters (±5 %), decline in larval survival due to increases in temperature and pCO2, modified growth rates due to rising temperature, and larval input from distant populations. In a closed population, an increase of pCO2 from 40.5 to 91.2 Pa reduces density, and an increase in temperature from 26 to 29 °C results in population extirpation within 100 yr. With a larval supply of 10 % from distant populations, the population persisted regardless of high temperature (+3 °C). These results indicate that: (1) populations of P. damicornis may be resistant to GCC and OA so long as it persists as part of a metapopulation capable of supplying larvae from spatially separated populations and (2) early life stages can regulate the population dynamics of P. damicornis.


Climate change Ocean acidification Coral reefs Demographic models Pocillopora damicornis Population dynamics 



This research was funded through the US National Science Foundation (BIO-OCE 08-44785) and contributes to the collaboration supported under the Memorandum of Understanding between California State University, Northridge (CSUN), USA, and National Dong Hwa University, Shoufeng, Taiwan. We are grateful to NMMBA staff who made this research possible and to S. Zamudio and A. Ninokawa who assisted with fieldwork and larval release measurements. Thanks to K Guizien for precious advices on MATLAB scripts. This is contribution number 224 of the marine biology program of CSUN.

Supplementary material

338_2015_1269_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2178 kb)


  1. Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Ann Rev Mar Sci 5(1):321–348CrossRefPubMedGoogle Scholar
  2. Bak RPM, Meesters EH (1998) Coral population structure: the hidden information of colony size-frequency distributions. Mar Ecol Prog Ser 162:301–306CrossRefGoogle Scholar
  3. Babcock RC (1984) Reproduction and distribution of two species of Goniastrea (Scleractinia) from the Great Barrier Reef province. Coral Reefs 2:187–204Google Scholar
  4. Bramanti L, Santangelo G, Iannelli M (2009) Mathematical modelling for conservation and management of gorgonians corals: young and olds, could they coexist? Ecol Model 20:2851–2856CrossRefGoogle Scholar
  5. Bramanti L, Movilla J, Guron M, Calvo E, Gori A, Dominguez-Carriò C, Grinyo J, Lopez-Sanz A, Martinez-Quintana A, Pelejero C, Ziveri P, Rossi S (2013) Effects of ocean acidification on the precious Mediterranean red coral. Glob Change Biol 19:1897–1908CrossRefGoogle Scholar
  6. Buddemeier RW, Kinzie RA (1976) Coral growth. Oceanogr Mar Biol Ann Rev 14:183–225Google Scholar
  7. Caswell H (1989) Matrix population models: construction, analysis, and interpretation. Sinauer, SunderlandGoogle Scholar
  8. Chan NCS, Connolly SR (2012) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob Change Biol 19:282–290CrossRefGoogle Scholar
  9. Chollett I, Müller-Karger FE, Heron SF, Skirving W, Mumby PJ (2012) Seasonal and spatial heterogeneity of recent sea surface temperature trends in the Caribbean Sea and southeast Gulf of Mexico. Mar Pollut Bull 64:956–965CrossRefPubMedGoogle Scholar
  10. Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2013) The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol Oceanogr 58:388–398CrossRefGoogle Scholar
  11. Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2014) Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations. Limnol Oceanogr 59:1081–1091CrossRefGoogle Scholar
  12. Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Ann Rev Mar Sci 1:443–466CrossRefPubMedGoogle Scholar
  13. Cowen RK, Kamazima M, Lwiza M, Sponaugle S, Paris CB, Olson DB (2000) Connectivity of marine populations: open or closed? Science 287:857–859CrossRefPubMedGoogle Scholar
  14. Cumbo VR, Fan TY, Edmunds PJ (2012) Physiological development of brooded larvae from two pocilloporid corals in Taiwan. Mar Biol 159:2853–2866CrossRefGoogle Scholar
  15. Cumbo VR, Fan TY, Edmunds PJ (2013) Effects of exposure duration on the response of Pocillopora damicornis larvae to elevated temperature and high pCO2. J Exp Mar Bio Ecol 439:100–107CrossRefGoogle Scholar
  16. Dai CF (1991) Reef environment and coral fauna of southern Taiwan. Atoll Res Bull 354:1–28CrossRefGoogle Scholar
  17. Darling E, Alvarez-Filip L, Oliver TA, McClanahan TR, Côté IM (2012) Evaluating life-history strategies of reef corals from species traits. Ecol Lett 15:1378–1386CrossRefPubMedGoogle Scholar
  18. De Kroon H, Van Groenendael J, Ehrlen J (2000) Elasticities: a review of methods and model limitations. Ecology 81:607–618CrossRefGoogle Scholar
  19. Dufault AM, Cumbo VR, Fan TY, Edmunds PJ (2012) Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Philos Trans R Soc Lond B Biol Sci 279:2951–2958CrossRefGoogle Scholar
  20. Dufault AM, Ninokawa A, Bramanti L, Cumbo VR, Fan TY, Edmunds PJ (2013) The role of light in mediating the effects of ocean acidification on coral calcification. J Exp Biol 216:1570–1577CrossRefPubMedGoogle Scholar
  21. Edmunds PJ (2005) The effect of sub-lethal increases in temperature on the growth and population trajectories of three scleractinian corals on the southern Great Barrier Reef. Oecologia 146:350–364CrossRefPubMedGoogle Scholar
  22. Edmunds PJ (2012) Effect of pCO2 on the growth, respiration, and photophysiology of massive Porites spp. in Moorea, French Polynesia. Mar Biol 159:2149–2160CrossRefGoogle Scholar
  23. Edmunds PJ, Elahi R (2007) The demographics of a 15-year decline in cover of the Caribbean reef coral Montastrea annularis. Ecol Monogr 77:3–18CrossRefGoogle Scholar
  24. Edmunds PJ, Cumbo V, Fan TY (2011) Effects of temperature on the respiration of brooded larvae from tropical reef corals. J Exp Biol 214:2783–2790CrossRefPubMedGoogle Scholar
  25. Edmunds PJ, Brown D, Moriarty V (2012) Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. Glob Change Biol 18:2173–2183CrossRefGoogle Scholar
  26. Edmunds PJ, Burgess SC, Putnam HM, Baskett ML, Bramanti L, Fabina NS, Han X, Lesser MP, Madin JS, Wall CB, Yost DM, Gates RD (2014) Evaluating the causal basis of ecological success within the Scleractinia: an integral projection model approach. Mar Biol. doi: 10.1007/s00227-014-2547-y Google Scholar
  27. Engelen A, Santos R (2009) Which demographic traits determine population growth in the invasive brown seaweed Sargassum muticum? J Ecol 97:675–684CrossRefGoogle Scholar
  28. Fabricius KE, Metzner J (2004) Scleractinian walls of mouths: predation on coral larvae by corals. Coral Reefs 23:245–248CrossRefGoogle Scholar
  29. Fan TY, Dai CF (2003) Sexual reproduction of the reef coral Pocillopora damicornis in southern Taiwan. Acta Oceanogr Taiwan 41:1–12Google Scholar
  30. Fan TY, Li JJ, Le SX, Fang LS (2002) Lunar periodicity of larval release by pocilloporid corals in southern Taiwan. Zool Stud 41:288–294Google Scholar
  31. Fan TY, Lin KH, Kuo FW, Soong K, Liu LL, Fang LS (2006) Diel patterns of larval release by five brooding scleractinian corals. Mar Ecol Prog Ser 321:133–142CrossRefGoogle Scholar
  32. Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high CO2 world. Oceanography 22:36–47CrossRefGoogle Scholar
  33. Fujiwara M, Caswell H (2001) Demography of the endangered North Atlantic right whale. Nature 414:537–541CrossRefPubMedGoogle Scholar
  34. Gaines S, Roughgarden J (1985) Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proc Natl Acad Sci USA 82:3707–3711CrossRefPubMedCentralPubMedGoogle Scholar
  35. Grigg RW (1977) Population dynamics of two gorgonian corals. Ecology 58:278–290CrossRefGoogle Scholar
  36. Hall VR, Hughes TP (1996) Reproductive strategies of modular organisms: comparative studies of reef-building corals. Ecology 77:950–963CrossRefGoogle Scholar
  37. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99CrossRefPubMedGoogle Scholar
  38. Harii S, Kayanne H, Takigawa H, Hayashibara T, Yamamoto M (2002) Larval survivorship, competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Mar Biol 141:39–46CrossRefGoogle Scholar
  39. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528CrossRefPubMedGoogle Scholar
  40. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakini CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  41. Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell M (2010) The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism to ecosystem perspective. Annu Rev Ecol Evol Syst 41:127–147CrossRefGoogle Scholar
  42. Hughes TP (1984) population dynamics based on individual size rather than age: a general model with a reef coral example. Am Nat 123:778–795CrossRefGoogle Scholar
  43. Hughes TP, Jackson JBC (1985) Population dynamics and life histories of foliaceous corals. Ecol Monogr 55:141–166CrossRefGoogle Scholar
  44. Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL (2000) Supply-side ecology works both ways: the link between benthic adults, fecundity and larval recruits. Ecology 81:2241–2249CrossRefGoogle Scholar
  45. Jokiel PL, Rodgers KS, Kuffnerib IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483CrossRefGoogle Scholar
  46. Jones GP, Almany GR, Russ GR, Sale PF, Steneck RS, Van Oppen MJH, Willis BL (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28:307–325CrossRefGoogle Scholar
  47. Joos F, Frölicher TL, Steinarcher M, Plattner GK (2011) Impact of climate change mitigation on ocean acidification projections. In: Gattuso JP, Hansson L (eds) ocean acidification. Oxford University Press, Oxford, pp 272–290Google Scholar
  48. Kelly MW, Hofmann GE (2012) Adaptation and the physiology of ocean acidification. Funct Ecol 27:980–990CrossRefGoogle Scholar
  49. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434CrossRefPubMedGoogle Scholar
  50. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Change Biol 19:1884–1896CrossRefGoogle Scholar
  51. Kurihara H, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser 274:161–169CrossRefGoogle Scholar
  52. Lipcius RN, Ralph GM (2011) Evidence of source-sink dynamics in marine and estuarine species. In: Lui J, Hull V, Morzillo A, Wiens JA (eds) Source, sinks, and sustainability. Cambridge University Press, Cambridge, pp 361–381CrossRefGoogle Scholar
  53. Madin JS, Hoogenboom MO, Connolly SR (2012) Integrating physiological and biomechanical drivers of population growth over environmental gradients on coral reefs. J Exp Biol 215:968–976CrossRefPubMedGoogle Scholar
  54. Manzello DP (2010) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758CrossRefGoogle Scholar
  55. Marhaver KL, Vermeij MJA, Rohwer F, Sandin SA (2012) Janzen-Connel effects in a broadcast-spawning Caribbean coral: distance dependent survival of larvae and settlers. Ecology 94:146–160CrossRefGoogle Scholar
  56. Meinshausen M, Smith SJ, Calvin KV, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson AM, Velders GJM, van Vuuren D (2011) The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Clim Change 109:213–241CrossRefGoogle Scholar
  57. Mumby PJ (1999) Can Caribbean coral populations be modelled at metapopulation scales? Mar Ecol Prog Ser 180:275–288CrossRefGoogle Scholar
  58. Mumby PJ, van Woesik R (2014) Consequences of ecological, evolutionary and biogeochemical uncertainty for coral reef responses to climatic stress. Curr Biol 24:413–423CrossRefGoogle Scholar
  59. Munasik M, Suharsono S, Situmorang J, Kamiso HH (2008) Timing of larval release by reef coral Pocillopora damicornis at Panjang Island, Central Java. Mar Res Indones 33:33–39Google Scholar
  60. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefPubMedGoogle Scholar
  61. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422CrossRefPubMedGoogle Scholar
  62. Paz-García DA, Chávez-Romo HE, Correa-Sandoval F, Reyes-Bonilla H, López-Pérez A, Medina-Rosas P, Hernández-Cortés MP (2012) Genetic connectivity patterns of corals Pocillopora damicornis and Porites panamensis (Anthozoa: Scleractinia) along the west coast of Mexico. Pac Sci 66:43–61CrossRefGoogle Scholar
  63. Pengsakun S, Sutthacheep M, Yeemin T (2012) Comparing recruitment of Pocillopora damicornis affected by the 2010 bleaching event. Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9-13 July 2012. 9A Coral bleaching and climate changeGoogle Scholar
  64. Porter JW (1976) Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. Am Nat 110:731–742CrossRefGoogle Scholar
  65. Richmond RH (1987) Energetic relationships and biogeographical differences among fecundity, growth and reproduction in the reef coral Pocillopora damicornis. Bull Mar Sci 41:594–604Google Scholar
  66. Rodolfo-Metalpa R, Martin S, Ferrier-Pages C, Gattuso JP (2010) Response of the temperate coral Cladocora caespitosa to long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300CrossRefGoogle Scholar
  67. Sammarco PW, Brazeau DA, Sinclair J (2012) Genetic Connectivity in Scleractinian corals across the Northern Gulf of Mexico: oil/Gas platforms, and relationship to the flower garden banks. Plos One 7:e30144CrossRefPubMedCentralPubMedGoogle Scholar
  68. Santangelo G, Bramanti L, Iannelli M (2007) Population dynamics and conservation biology of the over-exploited Mediterranean red coral. J Theor Biol 244:416–423CrossRefPubMedGoogle Scholar
  69. Santangelo G, Maggi E, Bramanti L, Bongiorni L (2004) Demography of the over-exploited Mediterranean red coral (Corallium rubrum L. 1758). Sci Mar 68:199–204Google Scholar
  70. Sato M (1985) Mortality and growth of juvenile coral Pocillopora damicornis (Linnaeus). Coral Reefs 4:27–33CrossRefGoogle Scholar
  71. Torda G, Lundgren P, Willis BL, Van Oppen MJH (2013a) Revisiting the connectivity puzzle of the common coral Pocillopora damicornis. Mol Ecol 22:5805–5820CrossRefPubMedGoogle Scholar
  72. Torda G, Lundgren P, Willis BL, Van Oppen MJH (2013b) Genetic assignment of recruits reveals short- and long-distance larval dispersal in Pocillopora damicornis on the Great Barrier Reef. Mol Ecol 22:5821–5834CrossRefPubMedGoogle Scholar
  73. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein TA, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery T, Tignor KB, Miller HL (eds) Climate Change 2007: The physical science basis Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 235–336Google Scholar
  74. Van Groenendael J, De Kroon H, Caswell H (1988) Projection matrices in population biology. Trends Ecol Evol 3:264–269CrossRefPubMedGoogle Scholar
  75. Van Oppen MJH, Lutz A, De’ath G, Peplow L, Kininmonth S (2008) Genetic traces of recent long-distance dispersal in a predominantly self-recruiting coral. Plos One 3:e3401CrossRefPubMedCentralPubMedGoogle Scholar
  76. Van Sickle J (1977) Mortality rates from size distributions: the application of a conservation law. Oecologia 27:311–318CrossRefGoogle Scholar
  77. Van Vuuren DP, Meinshausen M, Plattner GK, Joos F, Strassmann KM, Smith SJ, Wigley TML, Raper SCB, Riahi K, de la Chesnaye F, den Elzen MGJ, Fujino J, Jiang K, Nakicenovic N, Paltsev S, Reilly JM (2008) Temperature increase of 21st century mitigation scenarios. Proc Natl Acad Sci 105:258–262CrossRefGoogle Scholar
  78. Venn AA, Tambutté E, Holcomb M, Laurenta J, Allemand D, Tambutté S (2013) Impact of seawater acidification on pH at the tissue—skeleton interface and calcification in reef corals. Proc Natl Acad Sci 110:1634–1639CrossRefPubMedCentralPubMedGoogle Scholar
  79. Vermeij MJA, Sandin SA (2008) Density dependent settlement and mortality structure: the earliest life phases of a coral population. Ecology 89:1994–2004CrossRefPubMedGoogle Scholar
  80. Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, Townsville, p 1382Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • L. Bramanti
    • 1
    • 2
    Email author
  • M. Iannelli
    • 3
  • T. Y. Fan
    • 4
  • P. J. Edmunds
    • 1
  1. 1.Department of BiologyCalifornia State UniversityNorthridgeUSA
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques (LECOB UMR8222), Observatoire OcéanologiqueBanyuls/MerFrance
  3. 3.Department of MathematicsUniversity of TrentoPovo, TrentoItaly
  4. 4.National Museum of Marine Biology and AquariumTaiwanPeople’s Republic of China

Personalised recommendations