Advertisement

Coral Reefs

, Volume 34, Issue 2, pp 479–490 | Cite as

Species-specific declines in the linear extension of branching corals at a subtropical reef, Lord Howe Island

  • Kristen D. Anderson
  • Scott F. Heron
  • Morgan S. Pratchett
Report

Abstract

Reef-building corals are extremely sensitive to changing temperature regimes, such that sustained increases in ocean temperatures are generally expected to have negative effects on coral growth and survivorship. At high-latitude reefs, however, projected increases in ocean temperature may actually increase coral growth (relaxing constraints imposed by cool winter temperatures), though this will depend upon on the rate and extent of declines in aragonite saturation, which is already much lower at high latitudes. This study quantified linear extension rates of six scleractinian corals, Acropora yongei, Isopora cuneata, Pocillopora damicornis, Porites heronensis, Seriatopora hystrix, and Stylophora pistillata, at Lord Howe Island in 2010/11. Contemporary growth rates were compared to equivalent data collected in 1994/95. There was marked interspecific variation in growth rates, with A. yongei growing almost twice the rate of all other species. Temporal changes in annual growth also varied among species. Growth rates of both A. yongei and Pocillopora damicornis were 30 % of that recorded in 1994/95. However, growth rates of Porites heronensis had not changed. Declines in the growth rates of these branching species may be attributable to declines in aragonite saturation or increases in summertime temperatures above limits for optimal growth, but either way it appears that climate change is having negative effects on corals, even at subtropical locations.

Keywords

Lord Howe Island Ocean acidification Temperature Latitudinal coral growth 

Notes

Acknowledgments

This research was supported by a JCU-Griffith University Collaborative grant awarded to M Pratchett and G Diaz-Pulido, as well as an AIMS@JCU Honours grant awarded to K Anderson. Thanks to J. Casey for statistical advice. Pathfinder data were provided by GHRSST and the U.S. National Oceanographic Data Center, supported in part by a grant from the NOAA Climate Data Record (CDR) Program for satellites. The manuscript contents are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the US Government.

Supplementary material

338_2014_1251_MOESM1_ESM.docx (61 kb)
Supplementary material 1 (DOCX 61 kb)

References

  1. Anthony KRN, Kleypas JA, Gattuso JP (2011) Coral reefs modify their seawater carbon chemistry – implications for impacts of ocean acidification. Glob Chang Biol 17:3655–3666CrossRefGoogle Scholar
  2. Australian Institute of Marine Science (AIMS) (2014) Graph generated 3 April, 2014 using North Bay water temperatures Temperature logger and Data Centre, AIMS. Viewed 3rd April, 2014. http://data.aims.gov.au/aimsrtds/datatool.xhtml?site=1115&param=water%20temperature
  3. Bak RPM, Nieuwland G, Meesters EH (2009) Coral growth rates revisited after 31 years: what is causing lower extension rates in Acropora palmata? Bull Mar Sci 84:287–294Google Scholar
  4. Buddemeier RW, Maragos JE, Knutson DW (1974) Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. J Exp Mar Bio Ecol 14:179–199CrossRefGoogle Scholar
  5. Cantin NE, Lough JM (2014) Surviving coral bleaching events: Porites growth anomalies on the Great Barrier Reef. PLoS One 9:e88720CrossRefPubMedCentralPubMedGoogle Scholar
  6. Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325CrossRefPubMedGoogle Scholar
  7. Coker D, Wilson S, Pratchett M (2014) Importance of live coral habitat for reef fishes. Rev Fish Biol Fish 24:89–126CrossRefGoogle Scholar
  8. Cooper TF, O’leary RA, Lough JM (2012) Growth of Western Australian corals in the Anthropocene. Science 335:593–596CrossRefPubMedGoogle Scholar
  9. Cooper TF, De’ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Chang Biol 14:529–538CrossRefGoogle Scholar
  10. Crabbe MJC, Smith D (2005) Sediment impacts on growth rates of Acropora and Porites corals from fringing reefs of Sulawesi, Indonesia. Coral Reefs 24:437–441CrossRefGoogle Scholar
  11. Crossland CJ (1981) Seasonal growth of Acropora formosa and Pocillopora damicornis on a high latitude reef (Houtman Abrolhos, Western Australia). Proc 4th Int Coral Reef Symp. Manila 1:663–667Google Scholar
  12. Crossland CJ (1984) Seasonal-variations in the rates of calcification and productivity in the coral Acropora formosa on a high-latitude reef. Mar Ecol Prog Ser 15:135–140CrossRefGoogle Scholar
  13. De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119CrossRefPubMedGoogle Scholar
  14. Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G, Alvarez-Filip L, Baca B, Bartels E, Bastidas C, Bouchon C, Brandt M, Bruckner AW, Bunkley-Williams L, Cameron A, Causey BD, Chiappone M, Christensen TRL, Crabbe MJC, Day O, de la Guardia E, Diaz-Pulido G, DiResta D, Gil-Agudelo DL, Gilliam DS, Ginsburg RN, Gore S, Guzman HM, Hendee JC, Hernandez-Delgado EA, Husain E, Jeffrey CFG, Jones RJ, Jordan-Dahlgren E, Kaufman LS, Kline DI, Kramer PA, Lang JC, Lirman D, Mallela J, Manfrino C, Marechal JP, Marks K, Mihaly J, Miller WJ, Mueller EM, Muller EM, Toro CAO, Oxenford HA, Ponce-Taylor D, Quinn N, Ritchie KB, Rodriguez S, Ramirez AR, Romano S, Samhouri JF, Sanchez JA, Schmahl GP, Shank BV, Skirving WJ, Steiner SCC, Villamizar E, Walsh SM, Walter C, Weil E, Williams EH, Roberson KW, Yusuf Y (2010) Caribbean Corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS One 5(11):e13969Google Scholar
  15. Edmunds PJ, Brown D, Moriarty V (2012) Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. Glob Chang Biol 18:2173–2183CrossRefGoogle Scholar
  16. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169CrossRefGoogle Scholar
  17. Fallon SJ, McCulloch MT, van Woesik R, Sinclair DJ (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172:221–238CrossRefGoogle Scholar
  18. Feely RA, Sabine CL, Byrne RH, Millero FJ, Dickson AG, Wanninkhof R, Murata A, Miller LA, Greeley D (2012) Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean. Global Biogeochem Cycles 26:GB3001Google Scholar
  19. Ferrier-Pagès C, Gattuso JP, Dallot S, Jaubert J (2000) Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19:103–113CrossRefGoogle Scholar
  20. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schultz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom & New York, USA, pp 129–234Google Scholar
  21. Foster T, Short JA, Falter JL, Ross C, McCulloch MT (2014) Reduced calcification in Western Australian corals during anomalously high summer water temperatures. J Exp Mar Bio Ecol 461:133–143CrossRefGoogle Scholar
  22. Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry. Am Zool 39:160–183Google Scholar
  23. Gledhill DK, Wanninkhof R, Millero FJ, Eakin M (2008) Ocean acidification of the Greater Caribbean Region 1996-2006. J Geophys Res 113:C10031CrossRefGoogle Scholar
  24. Greenstein BJ, Pandolfi JM (2008) Escaping the heat: range shifts of reef coral taxa in coastal Western Australia. Glob Chang Biol 14:513–528CrossRefGoogle Scholar
  25. Grigg RW (1982) Darwin Point: A threshold for atoll formation. Coral Reefs 1:29–34CrossRefGoogle Scholar
  26. Guinotte JM, Fabry VJ (2008) Ocean acidification and its potential effects on marine ecosystems. Ann N Y Acad Sci 1134:320–342CrossRefPubMedGoogle Scholar
  27. Guinotte JM, Buddemeier RW, Kleypas JA (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22:551–558CrossRefGoogle Scholar
  28. Harriott VJ (1999) Coral growth in subtropical eastern Australia. Coral Reefs 18:281–291CrossRefGoogle Scholar
  29. Harriott VJ, Harrison PL, Banks SA (1995) The coral communities of Lord Howe Island. Mar Freshw Res 46:457–465CrossRefGoogle Scholar
  30. Harrison P, Dalton S, Carroll A (2011) Extensive coral bleaching on the world’s southernmost coral reef at Lord Howe Island, Australia. Coral Reefs 30:775–775CrossRefGoogle Scholar
  31. Heron SF, Willis BL, Skirving WJ, Eakin CM, Page CA, Miller IR (2010) Summer Hot Snaps and Winter Conditions: Modelling White Syndrome Outbreaks on Great Barrier Reef Corals. PLoS One 5:e12210CrossRefPubMedCentralPubMedGoogle Scholar
  32. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866CrossRefGoogle Scholar
  33. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528CrossRefPubMedGoogle Scholar
  34. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  35. Hoey AS, Pratchett MS, Cvitanovic C (2011) High macroalgal cover and low coral recruitment undermines the potential resilience of the world’s southernmost coral reef assemblages. PLoS One 6:e25824CrossRefPubMedCentralPubMedGoogle Scholar
  36. Hudson JH, Hanson KJ, Halley RB, Kindinger JL (1994) Environmental implications of growth rate changes in Montastrea Annularis: Biscayne National Park, Florida. Bull Mar Sci 54:647–669Google Scholar
  37. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933CrossRefPubMedGoogle Scholar
  38. IPCC (2007) Summary for policymakers. In: Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (eds) Climate Change 2007: Impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp 81–82Google Scholar
  39. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The physical science basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp 1–33Google Scholar
  40. Kleypas JA, Yates KK (2009) Coral reefs and ocean acidification. Oceanography 22:108–117CrossRefGoogle Scholar
  41. Kleypas JA, Mcmanus JW, Menez LAB (1999a) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159Google Scholar
  42. Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999b) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120CrossRefPubMedGoogle Scholar
  43. Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132CrossRefPubMedGoogle Scholar
  44. Lamberts AE (1978) Coral growth: alizarin method. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods. UNESCO, Paris, pp 253–357Google Scholar
  45. Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles 14:639–654CrossRefGoogle Scholar
  46. Lee K, Tong LT, Millero FJ, Sabine CL, Dickson AG, Goyet C, Park G-H, Wanninkhof R, Feely RA, Key RM (2006) Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophys Res Lett 33:L19605CrossRefGoogle Scholar
  47. Lewis E, Wallace DWR (1998) Program Developed for CO2 System Calculations. ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TennGoogle Scholar
  48. Liu G, Strong AE, Skirving W (2003) Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. EOS Trans Am Geophys Union 84:137–144CrossRefGoogle Scholar
  49. Liu G, Rauenzahn JL, Heron SF, Eakin CM, Skirving WJ, Christensen TRL, Strong AE, Li J (2013) NOAA Coral Reef Watch 50 km satellite sea surface temperature-based decision support system for coral bleaching management, NOAA Technical Report NESDIS 143. College Park, MD, NOAA/NESDIS, p 33Google Scholar
  50. Lough JM (2008) Coral calcification from skeletal records revisited. Mar Ecol Prog Ser 373:257–264CrossRefGoogle Scholar
  51. Lough JM (2012) Small change, big difference: sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011. J Geophys Res C 117:C09018CrossRefGoogle Scholar
  52. Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Bio Ecol 245:225–243CrossRefPubMedGoogle Scholar
  53. Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131CrossRefGoogle Scholar
  54. Manzello DP (2010) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758CrossRefGoogle Scholar
  55. Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163CrossRefGoogle Scholar
  56. McClanahan TR, Weil E, Maina J (2009) Strong relationship between coral bleaching and growth anomalies in massive Porites. Glob Chang Biol 15:1804–1816CrossRefGoogle Scholar
  57. Oliver JK, Chalker BE, Dunlap WC (1983) Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. Long-term growth-response of Acropora formosa (Dana 1846). J Exp Mar Bio and Ecol 73:11–35CrossRefGoogle Scholar
  58. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefPubMedGoogle Scholar
  59. Pratchett M, Trapon M, Berumen M, Chong-Seng K (2011) Recent disturbances augment community shifts in coral assemblages in Moorea, French Polynesia. Coral Reefs 30:183–193CrossRefGoogle Scholar
  60. Pratchett MS, Munday PL, Wilson SK, Graham NAJ, Cinner JE, Bellwood DR, Jones GP, Polunin NVC, McClanahan TR (2008) Effects of climate-induced coral bleaching on coral-reef fishes - ecological and economic consequences. In: Gibson RN, Atkinson RJA, Gordon JDM (eds) Oceanogr Mar Biol Ann Rev 46. RC Press-Taylor & Francis Group, Florida, USA, pp 251–296CrossRefGoogle Scholar
  61. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  62. Roche RC, Abel RA, Johnson KG, Perry CT (2010) Quantification of porosity in Acropora pulchra (Brook 1891) using X-ray micro-computed tomography techniques. J Exp Mar Bio Ecol 396:1–9CrossRefGoogle Scholar
  63. Sabine C, Hankin S, Koyuk H, Bakker DC, Pfeil B, Olsen A, Metzl N, Kozyr A, Fassbender A, Manke A (2012) Surface Ocean CO2 Atlas (SOCAT) gridded data products. Earth Sys Sci Data Disc 5:781–804CrossRefGoogle Scholar
  64. Spalding MD, Ravilious C, Green EP (2001) World Atlas of Coral Reefs. University of California Press, Berkeley, USA, Prepared at the UNEP World Conservation Monitoring Centre, p 320Google Scholar
  65. Tanzil JTI, Brown BE, Dunne RP, Lee JN, Kaandorp JA, Todd PA (2013) Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob Chang Biol 19:3011–3023CrossRefPubMedGoogle Scholar
  66. United Nations Education, Scientific and Cultural Organization (UNESCO) (2014) Lord Howe Island Group. Accessed 25 June 2014. http://whc.unesco.org/en/list/186
  67. van Hooidonk R, Maynard JA, Manzello D, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob Chang Biol 20:103–112 vanGoogle Scholar
  68. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kristen D. Anderson
    • 1
    • 2
  • Scott F. Heron
    • 3
    • 4
  • Morgan S. Pratchett
    • 1
  1. 1.ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  2. 2.AIMS@JCUJames Cook UniversityTownsvilleAustralia
  3. 3.NOAA Coral Reef WatchTownsvilleAustralia
  4. 4.Marine Geophysical Laboratory, Physics Department, College of Science, Technology and EngineeringJames Cook UniversityTownsvilleAustralia

Personalised recommendations