Coral Reefs

, Volume 34, Issue 1, pp 19–23 | Cite as

Hot moments in spawning aggregations: implications for ecosystem-scale nutrient cycling

  • Stephanie K. Archer
  • Jacob E. Allgeier
  • Brice X. Semmens
  • Scott A. Heppell
  • Christy V. Pattengill-Semmens
  • Amy D. Rosemond
  • Phillippe G. Bush
  • Croy M. McCoy
  • Bradley C. Johnson
  • Craig A. Layman
Note

Abstract

Biogeochemical hot moments occur when a temporary increase in availability of one or more limiting reactants results in elevated rates of biogeochemical reactions. Many marine fish form transient spawning aggregations, temporarily increasing their local abundance and thus nutrients supplied via excretion at the aggregation site. In this way, nutrients released by aggregating fish could create a biogeochemical hot moment. Using a combination of empirical and modeling approaches, we estimate nitrogen and phosphorus supplied by aggregating Nassau grouper (Epinephelus striatus). Data suggest aggregating grouper supply up to an order-of-magnitude more nitrogen and phosphorus than daily consumer-derived nutrient supply on coral reefs without aggregating fish. Comparing current and historic aggregation-level excretion estimates shows that overfishing reduced nutrients supplied by aggregating fish by up to 87 %. Our study illustrates a previously unrecognized ecosystem viewpoint regarding fish spawning aggregations and provides an additional perspective on the repercussions of their overexploitation.

Keywords

Spawning aggregation Nitrogen Phosphorus Nassau grouper Epinephelus striatus Biogeochemical hot moments 

Supplementary material

338_2014_1208_MOESM1_ESM.doc (46 kb)
Supplementary material 1 (DOC 45 kb)

References

  1. Allgeier JE, Yeager LA, Layman CA (2013) Consumers regulate nutrient limitation regimes and primary production in seagrass ecosystems. Ecology 94:521–529CrossRefPubMedGoogle Scholar
  2. Allgeier, JE, Layman, CA, Mumby, PJ, Rosemond, AD (2014) Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Glob Chang Biol [doi:10.1111/gcb.12566]
  3. Bishop JKB, Davis RE, Sherman JT (2002) Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science 298:817–821CrossRefPubMedGoogle Scholar
  4. Bouletreau S, Cucherousset J, Villeger S, Masson R, Santoul F (2011) Colossal aggregations of giant alien freshwater fish as a potential biogeochemical hotspot. PLoS One 6:e25732CrossRefPubMedCentralPubMedGoogle Scholar
  5. Capps KA, Flecker AS (2013) Invasive fishes generate biogeochemical hotspots in a nutrient limited system. PLoS One 8:e54093CrossRefPubMedCentralPubMedGoogle Scholar
  6. Cherubin LM, Nemeth RS, Idrisi N (2011) Flow and transport characteristics at an Epinephelus guttatus (red hind grouper) spawning aggregation site in St. Thomas (US Virgin Islands). Ecol Modell 222:3132–3148CrossRefGoogle Scholar
  7. Domeier ML, Colin PL (1997) Tropical reef fish spawning aggregations: defined and reviewed. Bull Mar Sci 60:698–726Google Scholar
  8. Eyre BD, Glud RN, Patten N (2008) Mass coral spawning: A natural large-scale nutrient addition experiment. Limnol Oceanogr 53:997–1013CrossRefGoogle Scholar
  9. Frank DA, Inouye RS, Huntly N, Minshall GW, Anderson JE (1994) The biogeochemistry of a North-temperate grassland with native ungulates- nitrogen dynamics in Yellowstone National Park. Biogeochemistry 26:163–188CrossRefGoogle Scholar
  10. Glud RN, Eyre BD, Patten N (2008) Biogeochemical responses to mass coral spawning at the Great Barrier Reef: effects on respiration and primary production. Limnol Oceanogr 53:1014–1024CrossRefGoogle Scholar
  11. Guest J (2008) How reefs respond to mass coral spawning. Science 320:621–623CrossRefPubMedGoogle Scholar
  12. Heppell SA, Semmens BX, Archer SK, Pattengill-Semmens CV, Bush PG, McCoy CM, Heppell SS, Johnson BC (2012) Documenting recovery of a spawning aggregation through size frequency analysis from underwater laser calipers measurements. Biol Conserv 155(119):127Google Scholar
  13. King K, Balogh J, Hughes K, Harmel R (2007) Nutrient load generated by storm event runoff from a golf course watershed. J Environ Qual 36:1021–1030CrossRefPubMedGoogle Scholar
  14. Layman CA, Allgeier JE, Yeager LA, Stoner EW (2013) Thresholds of ecosystem response to nutrient enrichment from fish aggregations. Ecology 94:530–536CrossRefPubMedGoogle Scholar
  15. Layman CA, Allgeier JE, Rosemond AD, Dahlgren CP, Yeager LA (2011) Marine fisheries declines viewed upside down: human impacts on consumer-driven nutrient recycling. Ecol App 21:343–349CrossRefGoogle Scholar
  16. Leichter JJ, Stewart HL, Miller SL (2003) Episodic nutrient transport to Florida coral reefs. Limnol Oceanogr 48:1394–1407CrossRefGoogle Scholar
  17. Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Bio Ecol 375:1–8CrossRefGoogle Scholar
  18. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312CrossRefGoogle Scholar
  19. McIntyre PB, Flecker AS, Vanni MJ, Hood JM, Taylor BW, Thomas SA (2008) Fish distributions and nutrient cycling in streams: Can fish create biogeochemical hotspots? Ecology 89:2335–2346CrossRefPubMedGoogle Scholar
  20. Meyer JL, Schultz ET, Helfman GS (1983) Fish schools - an asset to corals. Science 220:1047 1049Google Scholar
  21. Peterson BJ, Valentine JF, Heck KL Jr (2013) The snapper–grunt pump: Habitat modification and facilitation of the associated benthic plant communities by reef-resident fish. J Exp Mar Bio Ecol 441:50–54CrossRefGoogle Scholar
  22. Post DM, Taylor JP, Kitchell JF, Olson MH, Schindler DE, Herwig BR (1998) The role of migratory waterfowl as nutrient vectors in a managed wetland. Conserv Biol 12:910–920CrossRefGoogle Scholar
  23. Powell GVN, Kenworthy JW, Fourqurean JW (1989) Experimental evidence for nutrient limitation of seagrass growth in a tropical estuary with restricted circulation. Bull Mar Sci 44:324–340Google Scholar
  24. Ruhl HA, Ellena JA, Wilson RC, Helly J (2011) Seabird aggregation around free-drifting icebergs in the northwest Weddell and Scotia Seas. Deep Sea Res Part 2 Top Stud Oceanogr 58:1497–1504CrossRefGoogle Scholar
  25. Sadovy de Mitcheson Y, Cornish A, Domeier M, Colin PL, Russell M, Lindeman KC (2008) A global baseline for spawning aggregations of reef fishes. Conserv Biol 22:1233–1244CrossRefPubMedGoogle Scholar
  26. Sadovy Y (1997) The case of the disappearing grouper: Epinephelus striatus the Nassau grouper, in the Caribbean and Western Atlantic. Proceedings of the Forty-Fifth Annual Gulf and Caribbean Fisheries Institute 45:5–22Google Scholar
  27. Sadovy Y, Eklund A-M (1999) Synopsis of biological data on the Nassau grouper, Epinephelus striatus (Bloch, 1792), and the Jewfish, E. itajara (Lichtenstein, 1822) NOAA Technical Report NMFS 146 Food and Agriculture Organization (FAO) fisheries synopsis 157, FAO, RomeGoogle Scholar
  28. Sadovy Y, Domeier M (2005) Are aggregation-fisheries sustainable? Reef fish fisheries as a case study. Coral Reefs 24:254–262CrossRefGoogle Scholar
  29. Schreck CB, Moyle PB (eds) (1990) Methods for fish biology. American Fisheries Society, Bethesda, MLGoogle Scholar
  30. Smith CL (1972) A spawning aggregation of Nassau grouper, Epinephelus striatus (Bloch). Trans Am Fish Soc 101:257–261CrossRefGoogle Scholar
  31. Whaylen L, Pattengill-Semmens CV, Semmens BX, Bush PG, Boardman MR (2004) Observations of a Nassau grouper, Epinephelus striatus, spawning aggregation site in Little Cayman, Cayman Islands, including multi-species spawning information. Environ Biol Fishes 70:305–313CrossRefGoogle Scholar
  32. Whaylen L, Bush P, Johnson B, Luke KE, Mccoy C, Heppell S, Semmens B, Boardman M (2006) Aggregation dynamics and lessons learned from five years of monitoring at a Nassau grouper (Epinephelus striatus) spawning aggregation in Little Cayman, Cayman Islands, BWI. Proceedings of the 59th Annual Gulf and Caribbean Fisheries Institute. Fort Pierce Florida, Gulf and Caribbean Fisheries InstituteGoogle Scholar
  33. Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulses? Ecology 89:621–634CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stephanie K. Archer
    • 1
    • 2
  • Jacob E. Allgeier
    • 1
    • 3
  • Brice X. Semmens
    • 4
  • Scott A. Heppell
    • 5
  • Christy V. Pattengill-Semmens
    • 6
  • Amy D. Rosemond
    • 3
  • Phillippe G. Bush
    • 7
  • Croy M. McCoy
    • 7
  • Bradley C. Johnson
    • 7
  • Craig A. Layman
    • 1
    • 2
  1. 1.Department of Applied EcologyNorth Carolina State UniversityRaleighUSA
  2. 2.Marine Sciences Program, Department of Biological SciencesFlorida International UniversityNorth MiamiUSA
  3. 3.Odum School of EcologyUniversity of GeorgiaAthensUSA
  4. 4.Scripps Institution of OceanographyUniversity of CaliforniaLa JollaUSA
  5. 5.Department of Fisheries and WildlifeOregon State UniversityCorvallisUSA
  6. 6.Reef Environmental Education FoundationKey LargoUSA
  7. 7.Department of the EnvironmentCayman Islands GovernmentGrand CaymanCayman Islands

Personalised recommendations