Advertisement

Coral Reefs

, Volume 33, Issue 4, pp 965–977 | Cite as

Evaluation of annual resolution coral geochemical records as climate proxies in the Great Barrier Reef of Australia

  • Wenfeng Deng
  • Gangjian Wei
  • Malcolm McCulloch
  • Luhua Xie
  • Ying Liu
  • Ti Zeng
Report

Abstract

Sampling of annually banded massive coral skeletons at annual (or higher) resolutions is increasingly being used to obtain replicate long-term time series of changing seawater conditions. However, few of these studies have compared and calibrated the lower annual resolution records based on coral geochemical tracers with the corresponding instrumental climate records, although some studies have inferred the climatic significance of annual coral series derived from averages of monthly or sub-annual records. Here, we present annual resolution analysis of coral records of elemental and stable isotopic composition that are approximately 70 years long. These records were preserved in two coexisting colonies of Porites sp. from Arlington Reef, on the Great Barrier Reef in Australia, and are used to evaluate the climatic significance of annually resolved coral geochemical proxies. The geochemical records of coral sample “10AR2,” with its faster and relatively constant annual growth rate, appear to have been independent of skeletal growth rate and other vital effects. The annual resolution of Sr/Ca and Δδ18O time series was shown to be a good proxy for annual sea surface temperature (SST; r = −0.67, n = 73, p < 0.0000001) and rainfall records (r = −0.34, n = 67, p < 0.01). However, a slower growing coral sample, “10AR1” showed significantly lower correlations (r = −0.20, n = 71, p = 0.05 for Sr/Ca and SST; r = −0.19, n = 67, p = 0.06 for Δδ18O and rainfall), indicating its greater susceptibility to biological/metabolic effects. Our results suggest that while annually resolved coral records are potentially a valuable tool for determining, in particular, long timescale climate variability such as Pacific Decadal Oscillation, Interdecadal Pacific Oscillation, and other climatic factors, the selection of the coral sample is important, and replication is essential.

Keywords

Coral Sr/Ca Mg/Ca Carbon and oxygen isotopes Great Barrier Reef 

Notes

Acknowledgments

This work was financially supported by the National Basic Research Program of China (2013CB956103), the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (GIGCAS) 135 project (Y234091001), and the National Natural Sciences Foundation of China (41173004). Fieldwork costs for collecting the core was supported by the ARC Centre of Excellence for Coral Reef Studies and the award of a Western Australian Premier’s Fellowship to M McCulloch. This paper is contribution No. IS-1944 from GIGCAS. The authors also wish to thank the editors and reviewers for their helpful comments and constructive suggestions.

References

  1. Abram NJ, McGregor HV, Gagan MK, Hantoro WS, Suwargadi BW (2009) Oscillations in the southern extent of the Indo-Pacific Warm Pool during the mid-Holocene. Quat Sci Rev 28:2794–2803CrossRefGoogle Scholar
  2. Alibert C, McCulloch MT (1997) Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring of ENSO. Paleoceanography 12:345–363CrossRefGoogle Scholar
  3. Al-Rousan S, Felis T (2013) Long-term variability in the stable carbon isotopic composition of Porites corals at the northern Gulf of Aqaba, Red Sea. Paleogeogr Paleoclimatol Paleoecol 381–382:1–14CrossRefGoogle Scholar
  4. Arblaster J, Meehl G, Moore A (2002) Interdecadal modulation of Australian rainfall. Clim Dyn 18:519–531CrossRefGoogle Scholar
  5. Beck JW, Edwards RL, Ito E, Taylor FW, Recy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257:644–647PubMedCrossRefGoogle Scholar
  6. Böhm F, Gussone N, Eisenhauer A, Dullo W-C, Reynaud S, Paytan A (2006) Calcium isotope fractionation in modern scleractinian corals. Geochim Cosmochim Acta 70:4452–4462CrossRefGoogle Scholar
  7. Calvo E, Marshall JF, Pelejero C, McCulloch MT, Gagan MK, Lough JM (2007) Interdecadal climate variability in the Coral Sea since 1708 AD. Paleogeogr Paleoclimatol Paleoecol 248:190–201CrossRefGoogle Scholar
  8. Cardinal D, Hamelin B, Bard E, Pätzold J (2001) Sr/Ca, U/Ca and δ18O records in recent massive corals from Bermuda: relationships with sea surface temperature. Chem Geol 176:213–233CrossRefGoogle Scholar
  9. Cohen AL, Owens KE, Layne GD, Shimizu N (2002) The effect of algal symbionts on the accuracy of Sr/Ca paleotemperatures from coral. Science 296:331–333PubMedCrossRefGoogle Scholar
  10. Cole JE (2003) Holocene coral records: windows on tropical climate variability. In: Mackay A, Battarbee R, Birks J, Oldfield F (eds) Global change in the holocene. Arnold, London, pp 168–184Google Scholar
  11. Cole JE, Dunbar RB, McClanahan TR, Muthiga NA (2000) Tropical Pacific forcing of decadal SST variability in the western Indian Ocean over the past two centuries. Science 287:617–619PubMedCrossRefGoogle Scholar
  12. Crowley TJ, Quinn TM, Hyde WT (1999) Validation of coral temperature calibrations. Paleoceanography 14:605–615CrossRefGoogle Scholar
  13. Delcroix T, Henin C, Porte V, Arkin P (1996) Precipitation and sea-surface salinity in the tropical Pacific Ocean. Deep Sea Res Part I Oceanogr Res Pap 43:1123–1141CrossRefGoogle Scholar
  14. DeLong KL, Quinn TM, Taylor FW, Shen C-C, Lin K (2013) Improving coral-base paleoclimate reconstructions by replicating 350 years of coral Sr/Ca variations. Paleogeogr Paleoclimatol Paleoecol 373:6–24CrossRefGoogle Scholar
  15. Deng WF, Wei GJ, Li X-H, Yu KF, Zhao JX, Sun WD, Liu Y (2009) Paleoprecipitation record from coral Sr/Ca and δ18O during the mid Holocene in the northern South China Sea. Holocene 19:811–821CrossRefGoogle Scholar
  16. Deng W, Wei G, Xie L, Ke T, Wang Z, Zeng T, Liu Y (2013) Variations in the Pacific decadal oscillation since 1853 in a coral record from the northern South China Sea. J Geophys Res Oceans 118:2358–2366CrossRefGoogle Scholar
  17. Deng WF, Liu Y, Wei GJ, Li X-H, Tu XL, Xie LH, Zhang H, Sun WD (2010) High-precision analysis of Sr/Ca and Mg/Ca ratios in corals by laser ablation inductively coupled plasma optical emission spectrometry. J Anal At Spectrom 25:84–87CrossRefGoogle Scholar
  18. de Villiers S, Shen GT, Nelson BK (1994) The Sr/Ca-temperature relationship in coralline aragonite: Influence of variability in (Sr/Ca)seawater and skeletal growth parameters. Geochim Cosmochim Acta 58:197–208CrossRefGoogle Scholar
  19. de Villiers S, Nelson BK, Chivas AR (1995) Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperatures. Science 269:1247–1249PubMedCrossRefGoogle Scholar
  20. Dunbar RB, Wellington GM (1981) Stable isotopes in a branching coral monitor seasonal temperature variation. Nature 293:453–455CrossRefGoogle Scholar
  21. Dunbar RB, Wellington GM, Colgan MW, Glynn PW (1994) Eastern Pacific sea surface temperature since 1600 A.D.: The δ18O record of climate variability in Galápagos corals. Paleoceanography 9:291–315CrossRefGoogle Scholar
  22. Duprey N, Lazareth CE, Corrège T, Le Cornec F, Maes C, Pujol N, Madeng-Yogo M, Caquineau S, Soares Derome C, Cabioch G (2012) Early mid-Holocene SST variability and surface-ocean water balance in the southwest Pacific. Paleoceanography 27 [doi: 10.1029/2012PA002350]
  23. Fallon SJ, McCulloch MT, Alibert C (2003) Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs 22:389–404CrossRefGoogle Scholar
  24. Fallon SJ, McCulloch MT, van Woesik R, Sinclair DJ (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172:221–238CrossRefGoogle Scholar
  25. Felis T, Pätzold J (2003) Climate records from corals. In: Wefer G, Lamy F, Mantoura F (eds) Marine science frontiers for Europe. Springer-Verlag, Berlin Heidelberg New York Tokyo, pp 11–27CrossRefGoogle Scholar
  26. Felis T, Pätzold J, Loya Y (2003) Mean oxygen-isotope signatures in Porites spp. corals: inter-colony variability and correction for extension-rate effects. Coral Reefs 22:328–336CrossRefGoogle Scholar
  27. Folland CK, Renwick JA, Salinger MJ, Mullan AB (2002) Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophys Res Lett 29:21-1–21-4CrossRefGoogle Scholar
  28. Gagan MK, Dunbar GB, Suzuki A (2012) The effect of skeletal mass accumulation in Porites on coral Sr/Ca and δ18O paleothermometry. Paleoceanography 27,[doi: 10.1029/2011PA002215]
  29. Gagan MK, Ayliffe LK, Beck JW, Cole JE, Druffel ERM, Dunbar RB, Schrag DP (2000) New views of tropical paleoclimates from corals. Quat Sci Rev 19:45–64CrossRefGoogle Scholar
  30. Gagan MK, Ayliffe LK, Hopley D, Cali JA, Mortimer GE, Chappell J, McCulloch MT, Head MJ (1998) Temperature and surface-ocean water balance of the mid-Holocene tropical Western Pacific. Science 279:1014–1018PubMedCrossRefGoogle Scholar
  31. Ghosh P, Adkins J, Affek H, Balta B, Guo WF, Schauble EA, Schrag D, Eller JM (2006) 13C-18O bonds in carbonate minerals: A new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456CrossRefGoogle Scholar
  32. Goodkin NF, Hughen KA, Cohen AL, Smith SR (2005) Record of Little Ice Age sea surface temperatures at Bermuda using a growth-dependent calibration of coral Sr/Ca. Paleoceanography 20 [doi: 10.1029/2005PA001140]
  33. Hendy EJ, Gagan MK, Alibert CA, McCulloch MT, Lough JM, Isdale PJ (2002) Abrupt decrease in tropical Pacific Sea surface salinity at end of Little Ice Age. Science 295:1511–1514PubMedCrossRefGoogle Scholar
  34. Hetzinger S, Pfeiffer M, Dullo W-C, Ruprecht E, Garbe-Schönberg D (2006) Sr/Ca and δ18O in a fast-growing Diploria strigosa coral: evaluation of a new climate archive for the tropical Atlantic. Geochem Geophys Geosyst 7 [doi: 10.1029/2006GC001347]
  35. Inoue M, Suzuki A, Nohara M, Hibino K, Kawahata H (2007) Empirical assessment of coral Sr/Ca and Mg/Ca ratios as climate proxies using colonies grown at different temperatures. Geophys Res Lett 34 [doi: 10.1029/2007GL029628]
  36. Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD, Vinther BM, Luterbacher J, Wahl ER, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Kuttel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope AW, Villalba R, Wanner H, Wolff E, Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49CrossRefGoogle Scholar
  37. Linsley BK, Zhang P, Kaplan A, Howe SS, Wellington GM (2008) Interdecadal-decadal climate variability from multicoral oxygen isotope records in the South Pacific Convergence Zone region since 1650 A.D. Paleoceanography 23 [doi: 10.1029/2007PA001539]
  38. Lough JM (1994) Climate variation and El Niño-Southern Oscillation events on the Great Barrier Reef: 1958 to 1987. Coral Reefs 13:181–185CrossRefGoogle Scholar
  39. Lough JM (2004) A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Paleogeogr Paleoclimatol Paleoecol 204:115–143CrossRefGoogle Scholar
  40. Lough JM (2007) Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia. Paleoceanography 22 [doi: 10.1029/2006PA001377]
  41. Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Bio Ecol 245:225–243PubMedCrossRefGoogle Scholar
  42. Marshall JF, McCulloch MT (2002) An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochim Cosmochim Acta 66:3263–3280CrossRefGoogle Scholar
  43. McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53:151–162CrossRefGoogle Scholar
  44. McConnaughey TA (2003) Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: carbonate and kinetic models. Coral Reefs 22:316–327CrossRefGoogle Scholar
  45. McConnaughey TA, Burdett J, Whelan JF, Paull CH (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta 61:611–622CrossRefGoogle Scholar
  46. McCulloch MT, Gagan MK, Mortimer GE, Chivas AR, Isdale PJ (1994) A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982-1983 El-Niño. Geochim Cosmochim Acta 58:2747–2754CrossRefGoogle Scholar
  47. McCulloch M, Fallon S, Wyndham T, Hendy E, Lough J, Barnes D (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421:727–730PubMedCrossRefGoogle Scholar
  48. McCulloch MT, Tudhope AW, Esat TM, Mortimer GE, Chappell J, Pillans B, Chivas AR, Omura A (1999) Coral record of equatorial sea-surface temperatures during the penultimate deglaciation at Huon Peninsula. Science 283:202–204PubMedCrossRefGoogle Scholar
  49. Meibom A, Cuif J-P, Hillion F, Constantz BR, Juillet-Leclerc A, Dauphin Y, Watanabe T, Dunbar RB (2004) Distribution of magnesium in coral skeleton. Geophys Res Lett 31 [doi: 10.1029/2004GL021313]
  50. Mitsuguchi T, Matsumoto E, Uchida T (2003) Mg/Ca and Sr/Ca ratios of Porites coral skeleton: Evaluation of the effect of skeletal growth rate. Coral Reefs 22:381–388CrossRefGoogle Scholar
  51. Mitsuguchi T, Matsumoto E, Abe O, Uchida T, Isdale PJ (1996) Mg/Ca thermometry in coral skeletons. Science 274:961–963PubMedCrossRefGoogle Scholar
  52. Mitsuguchi T, Uchida T, Matsumoto E, Isdale PJ, Kawana T (2001) Variations in Mg/Ca, Na/Ca, and Sr/Ca ratios of coral skeletons with chemical treatments: implications for carbonate geochemistry. Geochim Cosmochim Acta 65:2865–2874CrossRefGoogle Scholar
  53. Montagna P, McCulloch M, Mazzoli C, Silenzi S, Odorico R (2007) The non-tropical coral Cladocora caespitosa as the new climate archive for the Mediterranean: high-resolution (∼weekly) trace element systematics. Quat Sci Rev 26:441–462CrossRefGoogle Scholar
  54. Pelejero C, Calvo E, McCulloch MT, Marshall JF, Gagan MK, Lough JM, Opdyke BN (2005) Preindustrial to modern interdecadal variability in coral reef pH. Science 309:2204–2207PubMedCrossRefGoogle Scholar
  55. Pfeiffer M, Dullo WC, Zinke J, Garbe-Schonberg D (2009) Three monthly coral Sr/Ca records from the Chagos Archipelago covering the period of 1950-1995 AD: reproducibility and implications for quantitative reconstructions of sea surface temperature variations. Int J Earth Sci 98:53–66Google Scholar
  56. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324CrossRefGoogle Scholar
  57. Quinn TM, Sampson DE (2002) A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry. Paleoceanography 17 [doi: 10.1029/2000PA000528]
  58. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:4407CrossRefGoogle Scholar
  59. Rodriguez-Ramirez A, Grove CA, Zinke J, Pandolfi JM, Zhao JX (2014) Coral luminescence identifies the Pacific Decadal Oscillation as a primary driver of river runoff variability impacting the Southern Great Barrier Reef. PLoS One 9:e84305PubMedCentralPubMedCrossRefGoogle Scholar
  60. Schulz M, Mudelsee M (2002) REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput Geosci 28:421–426CrossRefGoogle Scholar
  61. Shen CC, Lee T, Liu KK, Hsu HH, Edwards RL, Wang CH, Lee MY, Chen YG, Lee HJ, Sun HT (2005) An evaluation of quantitative reconstruction of past precipitation records using coral skeletal Sr/Ca and δ18O data. Earth Planet Sci Lett 237:370–386CrossRefGoogle Scholar
  62. Sinclair DJ, Kinsley LPJ, McCulloch MT (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta 62:1889–1901CrossRefGoogle Scholar
  63. Smith SV, Buddemeier RW, Redalje RC, Houck JE (1979) Strontium-calcium thermometry in coral skeletons. Science 204:404–407PubMedCrossRefGoogle Scholar
  64. Smith JM, Quinn TM, Helmle KP, Halley RB (2006) Reproducibility of geochemical and climatic signals in the Atlantic coral Montastraea faveolata. Paleoceanography 21 [doi: 10.1029/2005PA001187]
  65. Sun Y, Sun M, Wei G, Lee T, Nie B, Yu Z (2004) Strontium contents of a Porites coral from Xisha Island, South China Sea: A proxy for sea-surface temperature of the 20th century. Paleoceanography 19 [doi: 10.1029/2003PA000959]
  66. Swart PK, Coleman ML (1980) Isotopic data for scleractinian corals explain their paleotemperature uncertainties. Nature 283:557–559CrossRefGoogle Scholar
  67. Swart PK, Leder JJ, Szmant AM, Dodge RE (1996) The origin of variations in the isotopic record of scleractinian corals: II. Carbon. Geochim Cosmochim Acta 60:2871–2885CrossRefGoogle Scholar
  68. Swart PK, Greer L, Rosenheim BE, Moses CS, Waite AJ, Winter A, Dodge RE, Helmle K (2010) The 13C Suess effect in scleractinian corals mirror changes in the anthropogenic CO2 inventory of the surface oceans. Geophys Res Lett 37. doi: 10.1029/2009GL041397
  69. Verdon DC, Wyatt AM, Kiem AS, Franks SW (2004) Multidecadal variability of rainfall and streamflow: Eastern Australia. Water Resour Res 40. doi:  10.1029/2004WR003234
  70. Watanabe T, Winter A, Oba T (2001a) Seasonal changes in sea surface temperature and salinity during the Little Ice Age in the Caribbean Sea deduced from Mg/Ca and 18O/16O ratios in corals. Mar Geol 173:21–35CrossRefGoogle Scholar
  71. Watanabe T, Minagawa M, Oba T, Winter A (2001b) Pretreatment of coral aragonite for Mg and Sr analysis: implications for coral thermometers. Geochem J 35:265–269CrossRefGoogle Scholar
  72. Watanabe T, Winter A, Oba T, Anzai R, Ishioroshi H (2002) Evaluation of the fidelity of isotope records as an environmental proxy in the coral Montastraea. Coral Reefs 21:169–178Google Scholar
  73. Weber JN (1973) Incorporation of strontium into reef coral skeletal carbonate. Geochim Cosmochim Acta 37:2173–2190CrossRefGoogle Scholar
  74. Wei GJ, Deng WF, Yu KF, Li XH, Sun WD, Zhao JX (2007) Sea surface temperature records in the northern South China Sea from mid-Holocene coral Sr/Ca ratios. Paleoceanography 22 [doi: 10.1029/2006PA001270]
  75. Wei GJ, McCulloch MT, Mortimer G, Deng WF, Xie LH (2009) Evidence for ocean acidification in the Great Barrier Reef of Australia. Geochim Cosmochim Acta 73:2332–2346CrossRefGoogle Scholar
  76. Yoshimura T, Tanimizu M, Inoue M, Suzuki A, Iwasaki N, Kawahata H (2011) Mg isotope fractionation in biogenic carbonates of deep-sea coral, benthic foraminifera, and hermatypic coral. Anal Bioanal Chem 401:2755–2769PubMedCrossRefGoogle Scholar
  77. Yu KF, Zhao JX, Wei GJ, Cheng XR, Chen TG, Felis T, Wang PX, Liu TS (2005) δ18O, Sr/Ca and Mg/Ca records of Porites lutea corals from Leizhou Peninsula, northern South China Sea, and their applicability as paleoclimatic indicators. Paleogeogr Paleoclimatol Paleoecol 218:57–73CrossRefGoogle Scholar
  78. Zinke J, Rountrey A, Feng M, Xie SP, Dissard D, Rankenburg K, Lough JM, McCulloch MT (2014) Corals record long-term Leeuwin current variability including Ningaloo Niño/Niña since 1795. Nat Commun 5:3607PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Wenfeng Deng
    • 1
  • Gangjian Wei
    • 1
  • Malcolm McCulloch
    • 2
  • Luhua Xie
    • 3
  • Ying Liu
    • 1
  • Ti Zeng
    • 3
  1. 1.State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  2. 2.The UWA Oceans Institute and School of Earth and EnvironmentUniversity of Western AustraliaCrawleyAustralia
  3. 3.Key Laboratory of Marginal Sea Geology, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina

Personalised recommendations