Coral Reefs

, Volume 33, Issue 1, pp 259–266 | Cite as

Abundance and reproductive patterns of the excavating sponge Cliona vermifera: a threat to Pacific coral reefs?

  • Eric Bautista-GuerreroEmail author
  • José Luis Carballo
  • Manuel Maldonado


Cliona vermifera is a common excavating sponge in coral reefs from the East Pacific. Abundance and reproductive patterns of the sponge in a Mexican Pacific coral reef over a 4-year period are herein described. Sponge abundance was estimated along three transects 50 m long which were randomly placed on the reef, and along each one, a piece of coral rubble and a branch of a live coral from the Pocillopora spp. coral colony closest to the transect were collected at random, approximately every 2 m, yielding 25 pieces of each category per transect (and 75 pieces total of each category). A 2-way ANOVA revealed that invasion was significantly higher in living coral colonies (34.8 %) than in rubble (13.7 %). It also indicated that the abundance in both coralline substrates showed a temporal variation without a clear pattern of increase over the years. It was estimated that 60–85 % of sponges in the population reproduced sexually every year. The sponge proved gonochoristic, with a sex ratio strongly departing from parity (1 male: 3 females). Over the 4-year study period, at least two cohorts of oocytes with densities of up to 3.5 oocytes per mm2 tissue were observed. Spermatogenesis lasted about a month, but often producing more than a pulse from July to November, coupled with peaks of oocyte maturation. Fertilization occurred internally to produce encapsulated zygotes that were released in one or more spawning events from July to November. In the following months (December to February), which were the periods of lowest temperature (~18.5–20 °C), no gametic activity occurred in the sponges. Because anomalous temperature rises that are detrimental to corals do not appear to negatively affect the reproduction and abundance of C. vermifera, it is likely that the excavating activity of this sponge may be compromising the health of those coral reefs that are recurrently affected by episodes of thermal stress.


Excavating sponges Invertebrate reproduction Coral reefs Bleaching Pocillopora 



We thank the following sources of funding: CONACYT SEP-2003-C02-42550 and CONACYT-SEP 2008 (102239) and to SAGARPA for a permit (DGOPA.02476.220306.0985 and DGOPA.06648.140807.3121) to collect samples on reef systems of Isla Isabel. Participation of M. Maldonado was partially funded by a BFU2008- 00227/BMC grant of the former Spanish Ministry of Sciences and Innovation. The authors thank Clara Ramírez (ICML-Mazatlán) for help with the literature. We also thank Arturo Núñez, Armando Chávez, and Humberto Ovalle for their assistance in field sampling and Selene María Abad (CIAD) for assistance with histological processing and to Yolanda Hornelas Orozco for his help with samples preparation and the acquisition of SEM photos.


  1. Abdo DA, McDonald JI, Harvey ES, Fromont J, Kendrick GA (2008) Neighbour and environmental influences on the growth patterns of two temperate haliclonid sponges. Mar Freshw Res 59:304–312CrossRefGoogle Scholar
  2. Campos Vázquez RA (2012) Evaluación de la pérdida de cobertura de coral y recuperación de Pocillopora, después de un blanqueamiento masivo en el arrecife de Bahía Tiburoneros (Parque Nacional Isla Isabel, Nayarit, México). Thesis. Instituto Tecnológico de bahía de Banderas. Dirección General de Educación Superior Tecnológica SEP, p62Google Scholar
  3. Carballo JL, Cruz-Barraza JA, Gómez P (2004) Taxonomy and description of clionaid sponges (Hadromerida, Clionaidae) from the Pacific Ocean of Mexico. Zool J Linn Soc 141:353–387CrossRefGoogle Scholar
  4. Carballo JL, Bautista-Guerrero E, Leyte-Morales GE (2008) Boring sponges and the modeling of coral reefs in the Eastern Pacific Ocean. Mar Ecol Prog Ser 356:113–122CrossRefGoogle Scholar
  5. Carballo JL, Hepburn L, Nava HH, Cruz-Barraza JA, Bautista-Guerrero E (2007) Coral boring Aka-species (Porifera: Phloeodictyidae) from Mexico with description of Aka cryptica sp. nov. J Mar Biol Assoc UK 87:1477–1484CrossRefGoogle Scholar
  6. Carballo JL, Bautista-Guerrero E, Nava H, Cruz-Barraza JA, Chávez JA (2013) Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol Evol 4:872–886CrossRefGoogle Scholar
  7. Cortés J, Murillo MM, Guzmán HM, Acuña J (1984) Pérdida de zooxantelas y muerte de corales y otros organismos arrecifales en el Caribe y Pacífico de Costa Rica. Rev Biol Trop 32:227–231Google Scholar
  8. Cruz-Barraza JA, Carballo JL, Bautista-Guerrero E, Nava H (2011) New species of excavating sponges (Porifera: Demospongiae) on coral reefs from the Mexican Pacific Ocean. J Mar Biol Assoc UK 91:999–1013CrossRefGoogle Scholar
  9. Fromont J, Bergquist PR (1994) Reproductive biology of three sponge species of the genus Xestospongia (Porifera: Demospongiae: Petrosida) from the Great Barrier Reef. Coral Reefs 13:119–126CrossRefGoogle Scholar
  10. Glynn PW (1990) Coral mortality and disturbances to coral reefs in the tropical eastern Pacific. In: Glynn PW (ed) Global ecological consequences of the 1982-1983 El Niño Southern Oscillation Elsevier Oceanography Series 52, Amsterdam, p 55–126Google Scholar
  11. Hernández L, Reyes-Bonilla H, Balart EF (2010) Efecto del blanqueamiento del coral por baja temperatura en los crustáceos decápodos asociados a arrecifes del suroeste del golfo de California. Revista Mexicana de Biodiversidad 81:113–119Google Scholar
  12. Hernández-Ballesteros LM, Elizalde-Rendón EM, Carballo JL, Carricart-Ganivet JP (2013) Sponge bioerosion on reef-building corals: dependent on the environment or on skeletal density? J Exp Mar Biol Ecol 441:23–27CrossRefGoogle Scholar
  13. Hoegh-Guldberg O, Mumby PJ, Hooten JA, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742PubMedCrossRefGoogle Scholar
  14. Levene H (1960) Robust tests for equality of variances. In: Harold I, Hotelling H (eds) Contributions to probability and statistics. Stanford University Press, Palo Alto, pp 278–292Google Scholar
  15. Maldonado M (2006) The ecology of sponge larvae. Can J Zool 84:175–194CrossRefGoogle Scholar
  16. Maldonado M (2009) Embryonic development of verongid demosponges supports independent acquisition of spongin skeletons as alternative to the siliceous skeleton of sponges. Biol J Linn Soc 97:427–447CrossRefGoogle Scholar
  17. Maldonado M, Riesgo A (2008) Reproduction in the phylum Porifera: a synoptic overview. Treb Soc Cat Biol 59:29–49Google Scholar
  18. Maldonado M, Riesgo A (2009) Gametogenesis, embryogenesis, and larval features of the oviparous sponge Petrosia ficiformis (Haplosclerida, Demospongiae). Mar Biol 156:2181–2197CrossRefGoogle Scholar
  19. Mariani S, Piscitelli MP, Uriz MJ (2001) Temporal and spatial co-occurrence in spawning and larval release of Cliona viridis (Porifera: Hadromerida). J Mar Biol Assoc UK 81:565–567Google Scholar
  20. Nava H, Carballo JL (2008) Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. J Exp Biol 211:2827–2831PubMedCrossRefGoogle Scholar
  21. Nava H, Carballo JL (2013) What environmental factors shape boring sponge assemblages at coral reefs from the Mexican Pacific coast? Mar Ecol 34:269–279CrossRefGoogle Scholar
  22. Nava H, Ramírez-Herrera MT (2011) Land use changes and impact on coral communities along the central Pacific coast of Mexico. Environ Earth Sci 65:1095–1104Google Scholar
  23. Piscitelli MP, Corriero G, Gaino E, Uriz MJ (2011) Reproductive cycles of the sympatric excavating sponges Cliona celata and Cliona viridis in the Mediterranean Sea. Invertebr Biol 130:1–10CrossRefGoogle Scholar
  24. Riesgo A, Maldonado M (2008) Differences in reproductive timing among sponges sharing habitat and thermal regimen. Invertebr Biol 127:357–367CrossRefGoogle Scholar
  25. Riesgo A, Maldonado M, Durfot M (2007) Dynamics of gametogenesis, embryogenesis, and larval release in Mediterranean homosclerophorid demosponge. Mar Freshw Res 58:398–417CrossRefGoogle Scholar
  26. Rose CS, Risk MJ (1985) Increase in Cliona delitrix infestation of Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. Mar Ecol 6:345–362CrossRefGoogle Scholar
  27. Rützler K (2002) Impact of crustose clionid sponges on Caribbean reef corals. Acta Geol Hisp 37:61–72Google Scholar
  28. Schönberg CHL, Ortiz JC (2008) Is sponge bioerosion increasing? In Proceedings of 11th Int Coral Reef Symp, 7–11Google Scholar
  29. Schönberg CHL, Wilkinson CR (2001) Induced colonization of corals by a clionid bioeroding sponge. Coral Reefs 20:69–76CrossRefGoogle Scholar
  30. Sokal R, Rohlf FJ (1981) Biometry. Freeman, San Franciso p259Google Scholar
  31. Whalan S, Battershill C, de Nys R (2007) Sexual reproduction of the brooding sponge Rhopaloeides odorabile. Coral Reefs 56:663–665Google Scholar
  32. Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS ONE 7(9):e45124. doi: 10.1371/journal.pone.0045124 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eric Bautista-Guerrero
    • 1
    Email author
  • José Luis Carballo
    • 1
  • Manuel Maldonado
    • 2
  1. 1.Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de México (Estación Mazatlán)MazatlánMéxico
  2. 2.Department of Marine EcologyCenter for Advanced Studies of Blanes (CEAB-CSIC)GironaSpain

Personalised recommendations