Coral Reefs

, Volume 33, Issue 1, pp 119–130

Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum

Report

Abstract

The objective of this study was to test whether elevated pCO2 predicted for the year 2100 (85.1 Pa) affects bleaching in the coral Seriatopora caliendrum (Ehrenberg 1834) either independently or interactively with high temperature (30.5 °C). Response variables detected the sequence of events associated with the onset of bleaching: reduction in the photosynthetic performance of symbionts as measured by maximum photochemical efficiency (Fv/Fm) and effective photochemical efficiency (ΔF/Fm′) of PSII, declines in net photosynthesis (Pnet) and photosynthetic efficiency (alpha, α), and finally, reduced chlorophyll a and symbiont concentrations. S. caliendrum was collected from Nanwan Bay, Taiwan, and subjected to combinations of temperature (27.7 vs. 30.5 °C) and pCO2 (45.1 vs. 85.1 Pa) for 14 days. High temperature reduced values of all dependent variables (i.e., bleaching occurred), but high pCO2 did not affect Symbiodinium photophysiology or productivity, and did not cause bleaching. These results suggest that short-term exposure to 81.5 Pa pCO2, alone and in combination with elevated temperature, does not cause or affect coral bleaching.

Keywords

Ocean acidification Temperature Bleaching Scleractinia Taiwan 

References

  1. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446PubMedCrossRefGoogle Scholar
  2. Behrenfeld MJ, Prasil O, Kolber ZS, Babin M, Falkowski PG (1998) Compensatory changes in photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynth Res 58:259–268CrossRefGoogle Scholar
  3. Bongaerts P, Riginos C, Ridgway T, Sampayo EM, van Oppen MJH, Englebert N, Vermeulen F, Hoegh-Guldberg O (2010) Genetic Divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PLoS ONE 5:e10871PubMedCentralPubMedCrossRefGoogle Scholar
  4. Brading P, Warner ME, Davey P, Smith DJ, Achterberg EP, Suggett DJ (2011) Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnol Oceanogr 56:927–938CrossRefGoogle Scholar
  5. Caldiera K, Jain AK, Hoffert MI (2003) Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 299:2052–2054CrossRefGoogle Scholar
  6. Chan NCS, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Global Change Biol 19:282–290CrossRefGoogle Scholar
  7. Coles SL, Jokiel PL (1977) Effects of temperature on photosynthesis and respiration in hermatypic corals. Mar Biol 43:209–216CrossRefGoogle Scholar
  8. Cosgrove J, Borowitzka MA (2010) Chlrophyll fluorescence terminology: an introduction. In: Suggett DJ, Borowitzka MA, Prášil O (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Developments in Applied Phycology 4:1–17Google Scholar
  9. Crawley A, Kline DI, Dunn S, Anthony K, Dove S (2010) The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Global Change Biol 16:851–863CrossRefGoogle Scholar
  10. Dai C-F, Horng S (2009) Scleractinian fauna of Taiwan. National Taiwan University Press, Taipei, The robusta groupGoogle Scholar
  11. Dickson AG, Sabine CL, Christian JR (eds) (2007) Guide to best practices for ocean CO2 measurements. PICES special publication 3: North Pacific Marine Science Organization, British ColumbiaGoogle Scholar
  12. Dufault AM, Ninokawa A, Bramanti L, Cumbo VR, Fan T-Y, Edmunds PJ (2013) The role of light in mediating the effects of ocean acidification on coral calcification. J Exp Biol. doi:10.1242/jeb.080549
  13. Dunn SR, Schnitzler CE, Weis VM (2007) Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc R Soc B 274:3079–3085PubMedCrossRefGoogle Scholar
  14. Edmunds PJ (2012) Effect of pCO2 on the growth, respiration and photophysiology of massive Porites spp. in Moorea French Polynesia. Mar Biol 159:2149–2160CrossRefGoogle Scholar
  15. Edmunds PJ, Davies PS (1988) Post-stimulation of respiration rates in the coral Porites porites. Coral Reefs 7:7–9CrossRefGoogle Scholar
  16. Falkowski PG, Raven JA (eds) (1997) Aquatic photosynthesis. Blackwell Science, MassachusettsGoogle Scholar
  17. Fangue NA, O’Donnel MJ, Sewell MA, Matson PG, MacPherson AC, Hofmann GE (2010) A laboratory-based experimental system for the study of ocean acidification effects on marine invertebrate larvae. Limnol Oceanogr 8:441–452CrossRefGoogle Scholar
  18. Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: Interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65CrossRefGoogle Scholar
  19. Garcia HE, Gordon LI (1992) Oxygen solubility in seawater: Better fitting equations. Limnol Oceanogr 37:1307–1312CrossRefGoogle Scholar
  20. Gates RD, Baghdasarian G, Muscatine L (1992) Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol Bull 182:324–332CrossRefGoogle Scholar
  21. Gates RD, Bil KY, Muscatine L (1999) The influence of an anthozoan “host factor” on the physiology of a symbiotic dinoflagellate. J Exp Mar Biol Ecol 232:241–259CrossRefGoogle Scholar
  22. Glynn PW (1983) Extensive ‘bleaching’ and death of reef corals on the Pacific coast of Panamá. Environ Conserv 10:149–154CrossRefGoogle Scholar
  23. Glynn PW (1996) Coral reef bleaching: Facts, hypotheses and implications. Global Change Biol 2:495–509CrossRefGoogle Scholar
  24. Godinot C, Houlbrèque F, Grover R, Ferrier-Pagès C (2011) Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE 6:e25024PubMedCentralPubMedCrossRefGoogle Scholar
  25. Goiran C, Al-Moghrabi S, Allemand D, Jaubert J (1996) Inorganic carbon uptake for photosynthesis by symbiotic coral/dino-flagellate associations. I. Photosynthetic performances of symbionts and dependence on sea water bicarbonate. J Exp Mar Biol Ecol 199:207–225CrossRefGoogle Scholar
  26. Herfort L, Thake B, Taubner I (2008) Bicarbonate stimulation of calcification and photosynthesis in two hermatypic corals. J Phycol 44:91–98CrossRefGoogle Scholar
  27. Hill R, Ralph PJ (2008) Dark-induced reduction of the plastoquinone pool in zooxanthellae of scleractinian corals and implications for measurements of chlorophyll a fluorescence. Symbiosis 46:45–56Google Scholar
  28. Hill R, Frankart C, Ralph P (2005) Impact of bleaching conditions on the components of non-photochemical quenching in the zooxanthellae of a coral. J Exp Mar Biol Ecol 322:83–92CrossRefGoogle Scholar
  29. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866CrossRefGoogle Scholar
  30. Hoegh-Guldberg O, Jones RJ (1999) Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar Ecol Prog Ser 183:73–86CrossRefGoogle Scholar
  31. Hoegh-Guldberg O, Smith GJ (1989) Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Mar Ecol Prog Ser 57:173–186CrossRefGoogle Scholar
  32. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742PubMedCrossRefGoogle Scholar
  33. Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc Natl Acad Sci USA 89:10302–10305PubMedCrossRefGoogle Scholar
  34. Iguchi A, Ozaki S, Nakamura T, Inoue M, Tanaka Y, Suzuki A, Kawahata H, Sakai K (2011) Effects of acidified seawater on coral calcification and symbiotic algae on the massive coral Porites australiensis. Mar Environ Res 73:32–36PubMedCrossRefGoogle Scholar
  35. Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547CrossRefGoogle Scholar
  36. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194Google Scholar
  37. Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant, Cell Environ 21:1219–1230CrossRefGoogle Scholar
  38. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res. doi:10.1029/2004JC002576
  39. Leclercq N, Gattuso J-P, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47:558–564CrossRefGoogle Scholar
  40. Leggat W, Badger MR, Yellowlees D (1999) Evidence for an inorganic carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol 121:1247–1255PubMedCentralPubMedCrossRefGoogle Scholar
  41. Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192CrossRefGoogle Scholar
  42. Lesser MP, Weis VM, Patterson MR, Jokiel PL (1994) Effects of morphology and water motion on carbon delivery and productivity in the reef coral, Pocillopora damicornis (Linnaeus): Diffusion barriers, inorganic carbon limitation, and biochemical plasticity. J Exp Mar Biol Ecol 178:153–179CrossRefGoogle Scholar
  43. Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131CrossRefGoogle Scholar
  44. Meehl GA, Arblaster JM, Tebaldi C (2007) Contributions of natural and anthropogenic forcing to changes in temperature extremes over the United States. Geophys Res Lett 34:L19709CrossRefGoogle Scholar
  45. Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light-and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond B 222:181–202CrossRefGoogle Scholar
  46. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422PubMedCrossRefGoogle Scholar
  47. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  48. Putnam HM, Stat M, Pochon X, Gates RD (2012) Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc R Soc B. doi:10.1098/rspb.2012.1454
  49. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  50. Ragni M, Airs RL, Hennige SJ, Suggett DJ, Warner ME, Geider RJ (2010) PSII photoinhibition and photorepair in Symbiodinium (Pyrrhophyta) differs between thermally tolerant and sensitive phylotypes. Mar Ecol Prog Ser 405:57–70CrossRefGoogle Scholar
  51. Raven J (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society http://royalsociety.org/uploadedFiles/Royal_Society_Content/policy/publications/2005/9634.pdf
  52. Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pagès C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biol 9:1660–1668CrossRefGoogle Scholar
  53. Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293CrossRefGoogle Scholar
  54. Sebens KP, Johnson AS (1991) Effects of water movement on prey capture and distribution of reef corals. Hydrobiologia 226:91–101CrossRefGoogle Scholar
  55. Smith DJ, Suggett DJ, Baker NR (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biol 11:1–11CrossRefGoogle Scholar
  56. Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74CrossRefGoogle Scholar
  57. Suggett DJ, Dong LF, Lawson T, Lawrenz E, Torres L, Smith DJ (2013) Light availability determines susceptibility of reef building corals to ocean acidification. Coral Reefs 32:327–337CrossRefGoogle Scholar
  58. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Tomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Climatic Change 109:5–31CrossRefGoogle Scholar
  59. Venn AA, Tambutté E, Lotto S, Zoccola D, Allemand D, Tambutté S (2009) Imaging intracellular pH in a reef coral and symbiotic anemone. Proc Natl Acad Sci USA 106:16574–16579PubMedCrossRefGoogle Scholar
  60. Wall CB, Edmunds PJ (2013) In situ effects of low pH and elevated HCO3 on juvenile massive Porites spp. in Moorea, French Polynesia. Bio Bull (in press)Google Scholar
  61. Warner ME, Fitt WK, Schmidt GW (1996) The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant, Cell Environ 19:291–299CrossRefGoogle Scholar
  62. Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching. Proc Natl Acad Sci USA 96:8012–8807Google Scholar
  63. Warner ME, Lesser MP, Ralph PJ (2010) Chlorophyll fluorescence in reef building corals. In: Suggett DJ, Borowitzka MA, Prášil O (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Developments in Applied Phycology 4:209–222Google Scholar
  64. Weis VM, Smith GJ, Muscatine L (1989) A CO2 supply mechanism in zooxanthellae cnidarians: role of carbonic anhydrase. Mar Biol 100:195–202CrossRefGoogle Scholar
  65. Wilkinson C (ed) (2008) Status of coral reefs of the world: 2008. Global Coral Reef Monitoring Network, TownsvilleGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of BiologyCalifornia State UniversityNorthridgeUSA
  2. 2.College of Life-SciencesSanta Monica CollegeSanta MonicaUSA
  3. 3.National Museum of Marine Biology and AquariumTaiwanRepublic of China
  4. 4.Institute of Marine Biodiversity and EvolutionNational Dong Hwa UniversityTaiwanRepublic of China

Personalised recommendations