Coral Reefs

, Volume 32, Issue 3, pp 847–858 | Cite as

Ubiquitous associations and a peak fall prevalence between apicomplexan symbionts and reef corals in Florida and the Bahamas

  • N. L. KirkEmail author
  • D. J. Thornhill
  • D. W. Kemp
  • W. K. Fitt
  • S. R. Santos


Although apicomplexans are a widely recognized and important parasitic group, little is known about those associated with invertebrates, such as reef-building scleractinian corals. To resolve the potential impact of apicomplexans on coral health, it is first necessary to further describe this group of putative parasites and determine their prevalence among host species. Here, it was hypothesized that apicomplexan prevalence would vary seasonally, similar to what occurs in other marine apicomplexans as well as some coral symbionts. To test this, Caribbean scleractinian species Porites astreoides, Montastraea (=Orbicella) annularis, M. (=O.) faveolata, and Siderastrea siderea were sampled seasonally from two reefs each in the Florida Keys and the Bahamas for 9- and 5.5-year periods, respectively. Utilizing a PCR-based screening assay, apicomplexan DNA was detected from most Floridian (80.1 %: n = 555/693) and Bahamian (90.7 %: n = 311/343) coral tissue samples collected over these multi-year periods. Furthermore, apicomplexan DNA was detected from nearly all (98.7 %: n = 78/79) single polyps sampled at multiple locations within six M. faveolata colonies, indicating little to no intracolonial variation in the screening assay. Mixed-model logistic regression was utilized to determine the effects of season, host species, and reef on apicomplexan prevalence. The model identified a significant seasonal effect, with the highest apicomplexan prevalence occurring during fall. There also was a large effect of host species, with apicomplexan prevalence significantly lower among S. siderea colonies relative to the other species. While reef did not have a significant effect in the full model, there was a significant difference in apicomplexan prevalence between Floridian and Bahamian reefs for S. siderea, implying regional differences in this host species. Despite seasonal and species-specific differences in prevalence, apicomplexans are ubiquitous constituents of these particular scleractinian coral species from Florida and the Bahamas.


Apicomplexa Prevalence Seasonality Coral holobiont Symbiodinium 



We thank Dr. F. F. Bartol and Dr. T. D. Steury for statistical advice and Drs. K. M. Halanych, C. A. Sundermann, N. E. Chadwick, as well as E. E. Kirk, members of the Molette Lab at Auburn University, and three anonymous reviewers for comments that greatly improved this work. Samples used in this project were collected through funding by National Science Foundation grants (9906976 and 0137007), National Oceanic and Atmospheric Administration, the Office of Naval Research, and the Bleaching Group of the Coral Reef Targeted Research and Capacity Building for Management to WFK and G. W. Schmidt. This work also was supported by grants from the Auburn University Graduate School and the PADI Foundation (#4005) to NLK. This manuscript represents contributions #104 and #11 from the Auburn University (AU) Marine Biology Program and Molette Biology Laboratory for Environmental and Climate Change Studies, respectively, and #31 from the Key Largo Marine Research Laboratory. We also thank the Florida Keys National Marine Sanctuary for permitting.

Supplementary material

338_2013_1038_MOESM1_ESM.doc (318 kb)
Supplementary material 1 (DOC 317 kb)
338_2013_1038_MOESM2_ESM.doc (32 kb)
Supplementary material 2 (DOC 31 kb)
338_2013_1038_MOESM3_ESM.doc (64 kb)
Supplementary material 3 (DOC 64 kb)
338_2013_1038_MOESM4_ESM.doc (32 kb)
Supplementary material 4 (DOC 32 kb)
338_2013_1038_MOESM5_ESM.doc (33 kb)
Supplementary material 5 (DOC 33 kb)
338_2013_1038_MOESM6_ESM.doc (32 kb)
Supplementary material 6 (DOC 31 kb)
338_2013_1038_MOESM7_ESM.eps (400 kb)
Supplementary material 7 (EPS 399 kb)
338_2013_1038_MOESM8_ESM.doc (24 kb)
Supplementary material 8 (DOC 23 kb)


  1. Adl SM, Leander BS, Simpson AGB, Archibald JM, Anderson OR, Bass D, Bowser SS, Brugerolle G, Farmer MA, Karpov S, Kolisko M, Lane CE, Lodge DJ, Mann DG, Meisterfeld R, Mendoza L, Moestrup O, Mozley-Standridge SE, Smirnov AV, Spiegel FW (2007) Diversity, nomenclature, and taxonomy of protists. Syst Biol 56:684–689PubMedCrossRefGoogle Scholar
  2. Albicócco AP, Vezzani D (2009) Further study on Ascogregarina culicis in temperate Argentina: Prevalence and intensity in Aedes aegypti larvae and pupae. J Invertebr Pathol 101:210–214PubMedCrossRefGoogle Scholar
  3. Alker AP, Smith GW, Kim K (2001) Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals. Hydrobiologia 460:105–111CrossRefGoogle Scholar
  4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  5. Alvarez-Pellitero P, Perez A, Quiroga MI, Redondo MJ, Vázquez S, Riaza A, Palenzuela O, Sitjà-Bobadilla A, Nieto JM (2009) Host and environmental risk factors associated with Cryptosporidium scophthalmi (Apicomplexa) infection in cultured turbot, Psetta maxima (L.) (Pisces, Teleostei). Vet Parasitol 165:207–215PubMedCrossRefGoogle Scholar
  6. Amo L, Fargallo JA, Martínez-Padilla J, Millán J, López P, Martín J (2005) Prevalence and intensity of blood and intestinal parasites in a field population of a Mediterranean lizard, Lacerta lepida. Parasitol Res 96:413–417PubMedCrossRefGoogle Scholar
  7. Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes (R package) Available at: http://cranr-projectorg/web/packages/lme4/indexhtml
  8. Boothroyd JC, Dubremetz JF (2008) Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat Rev Microbiol 6:79–88PubMedCrossRefGoogle Scholar
  9. Boullianne B, Evans RC, Smith TG (2007) Phylogentic analysis of Hepatozoon species (Apicomplexa: Adeleorina) infecting frogs of Nova Scotia, Canada, determined by ITS-1 sequences. J Parasitol 93:1435–1441CrossRefGoogle Scholar
  10. Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc Lond 166:465–529CrossRefGoogle Scholar
  11. Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett 4:366–369PubMedCrossRefGoogle Scholar
  12. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margulis et al. revisited. J Parasitol 83:575–583PubMedCrossRefGoogle Scholar
  13. Cavada F, Ayala R, Troccoli L, Cruz-Motta JJ (2011) Microalgae from the mucus layer of two massive corals: more than sunken plankton. Mar Biol 158:2495–2504CrossRefGoogle Scholar
  14. Clopton RE, Gold RE (1996) Host specificity of Gregarina blattarum von Siebold, 1839 (Apicomplexa: Eugregarinida) among five species of domiciliary cockroaches. J Invertebr Pathol 67:219–223PubMedCrossRefGoogle Scholar
  15. Coffroth MA, Lasker HR, Diamond ME, Bruenn JA, Bermingham E (1992) DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in a vegetative species. Mar Biol 114:317–325CrossRefGoogle Scholar
  16. Collantes-Fernández E, Alvarez-García G, Pérez-Pérez V, Pereira-Bueno J, Ortega-Mora LM (2004) Characterization of pathology and parasite load in outbred and inbred mouse models of chronic Neospora caninum infection. J Parasitol 90:579–583PubMedCrossRefGoogle Scholar
  17. Cróquer A, Bastidas C, Lipscomb D, Rodríguez-Martínez RE, Jordan-Dahlgren E, Guzman HM (2006) First report of folliculinid ciliates affecting Caribbean scleractinian corals. Coral Reefs 25:187–191CrossRefGoogle Scholar
  18. Edmunds PJ, Gates RD, Gleason DF (2001) The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar Biol 139:981–989CrossRefGoogle Scholar
  19. Engel S, Jensen PR, Fenical W (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28:1971–1985PubMedCrossRefGoogle Scholar
  20. Field SG, Michiels NK (2005) Parasitism and growth in the earthworm Lumbricus terrestris: fitness costs of the gregarine parasite Monocystis sp. Parasitology 130:397–403PubMedCrossRefGoogle Scholar
  21. Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanog 45:677–685CrossRefGoogle Scholar
  22. Fox J, Weisberg S (2011) An R Companion to Applied Regression. Sage, Thousand Oaks, CAGoogle Scholar
  23. Gantar M, Kaczmarsky LT, Stanic D, Miller AW, Richardson LL (2011) Antibacterial activity of marine and black band disease cyanobacteria against coral-associated bacteria. Mar Drugs 9:2089–2105PubMedCrossRefGoogle Scholar
  24. Gochfeld DJ, Olson JB, Slattery M (2006) Colony versus population variation in susceptibility and resistance to dark spot syndrome in the Caribbean coral Siderastrea siderea. Dis Aquat Org 69:53–65PubMedCrossRefGoogle Scholar
  25. Godfrey SS, Nelson NJ, Bull CM (2011) Ecology and dynamics of the blood parasite, Hepatozoon tuatarae (Apicomplexa), in Tuatara (Sphenodon punctatus) on Stephens Island, New Zealand. J Wildlife Dis 47:126–139Google Scholar
  26. Goulet TL, Coffroth MA (2004) The genetic identity of dinoflagellate symbionts in Caribbean octocorals. Coral Reefs 23:465–472Google Scholar
  27. Gutner-Hoch E, Fine M (2011) Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals. Coral Reefs 30:643–650CrossRefGoogle Scholar
  28. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453PubMedCrossRefGoogle Scholar
  29. Jaeger TF (2008) Categorical data analysis: away from ANOVAs (transformation or not) and towards logit mixed models. J Mem Lang 59:434–446PubMedCrossRefGoogle Scholar
  30. Jäkel T, Burgstaller H, Frank W (1996) Sarcocystis singaporensis: studies on host specificity, pathogenicity, and potential use as a biocontrol agent of wild rats. J Parasitol 82:280–287PubMedCrossRefGoogle Scholar
  31. Janouskovec J, Horák A, Barott KL, Rohwer FL, Keeling PJ (2012) Global analysis of plastid diversity reveals apicomplexan- related lineages in coral reefs. Curr Biol 22:R518–R519PubMedCrossRefGoogle Scholar
  32. Kemp DW, Fitt WK, Schmidt GW (2008) A microsampling method for genotyping coral symbionts. Coral Reefs 27:289–293CrossRefGoogle Scholar
  33. Kim K, Weiss LM (2004) Toxoplasma gondii: the model apicomplexan. Int J Parasit 34:423–432CrossRefGoogle Scholar
  34. Knowlton N, Rohwer FL (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162:S51–S61PubMedCrossRefGoogle Scholar
  35. Kvennefors ECE, Sampayo E, Kerr C, Vieira G, Roff G, Barnes AC (2012) Regulations of bacterial communities through antimicrobial activity by the coral holobiont. Microb Ecol 63:605–618PubMedCrossRefGoogle Scholar
  36. Kvicerova J, Ptackova P, Modry D (2007) Endogenous development, pathogenicity and host specificity of Eimeria cahirinensis Couch, Blaustein, Duszynski, Shenbrot and Nevo, 1997 (Apicomplexa: Eimeriidae) from Acomys dimidiatus (Cretzschmar 1826) (Rodentia: Muridae) from the Near East. Parasitol Res 100:219–226PubMedCrossRefGoogle Scholar
  37. LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  38. Landau H, Galtsoff PS (1951) Distribution of Nematopsis infection on the oyster grounds of the Chesapeake Bay and in other waters of the Atlantic and Gulf states. Tex J Sci 3:115–130Google Scholar
  39. Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, AmsterdamGoogle Scholar
  40. Locklin JL, Vodopich DS (2010) Patterns of gregarine parasitism in dragonflies: host, habitat, and seasonality. Parasitol Res 107:75–87PubMedCrossRefGoogle Scholar
  41. Martin BD, Schwab E (2013) Current usage of symbiosis and associated terminology. Int J Biol 5:32–45Google Scholar
  42. McGuire MP (1998) Timing of larval release by Porites astreoides in the northern Florida Keys. Coral Reefs 17:369–375CrossRefGoogle Scholar
  43. Miller MA, Conrad PA, Harris M, Hatfield B, Langlois G, Jessup DA, Magargal SL, Packham AE, Toy-Choutka S, Melli AC, Murray MA, Gulland FM, Grigg ME (2010) A protozoal-associated epizootic impacting marine wildlife: Mass-mortality of southern sea otters (Enhydra lutris nereis) due to Sarcocystis neurona infection. Vet Parasitol 172:183–194PubMedCrossRefGoogle Scholar
  44. Molnár K, Ostoros G, Baska F (2005) Cross-infection experiments confirm the host specificity of Goussia spp. (Eimeriidae: Apicomplexa) parasitizing cyprinid fish. Acta Protozool 44:43–49Google Scholar
  45. Moore RB, Obornik M, Janouskovec J, Chrudimsky T, Vancova M, Green DH, Wright SW, Davies NW, Bolch CJ, Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963PubMedCrossRefGoogle Scholar
  46. Morales ME, Ocampo CB, Cadena H, Copeland CS, Termini M, Wesson DM (2005) Differential identification of Ascogregarina species (Apicomplexa: Lecudinidae) in Aedes Aegypti and Aedes albopictus (Diptera: Culicidae) by polymerase chain reaction. J Parasitol 91:1352–1356PubMedCrossRefGoogle Scholar
  47. Morsy K, Bashtar A-R, Abdel-Ghaffar F, Mehlhorn H, Quraishy SA, Al-Ghamdi A, Koura E, Maher S (2012) Sarcocystis acanthocolubri sp. n. infecting three lizard species of the genus Acanthodactylus and the problem of host specificity. Light and electron microscopic study. Parasitol Res 110:355–362PubMedCrossRefGoogle Scholar
  48. Motriuk-Smith D, Seville RS, Oliver CE, Hofmann DL, Smith AW (2009) Species of Eimeria (Apicomplexa: Eimeriidae) from tree squirrels (Sciurus niger) (Rodentia: Sciuridae) and analysis of the ITS1, ITS2, and 5.8S rDNA. J Parasitol 95:191–197PubMedCrossRefGoogle Scholar
  49. Mydlarz LD, Holthouse SF, Peters EC, Harvell CD (2008) Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PLoS ONE 3:e1811PubMedCrossRefGoogle Scholar
  50. Mydlarz LD, Couch CS, Weil E, Smith G, Harvell CD (2009) Immune defenses of healthy, bleached and diseased Montastraea faveolata during a natural bleaching event. Dis Aquat Org 87:67–78PubMedCrossRefGoogle Scholar
  51. Mydlarz LD, McGinty ES, Harvell CD (2010) What are the physiological and immunological responses of coral to climate warming and disease? J Exp Biol 213:934–945PubMedCrossRefGoogle Scholar
  52. Odense PH, Logan VH (1976) Prevalence and morphology of Eimeria gadi (Fiebirger, 1913) in the Haddock. J Protozool 23:564–571PubMedGoogle Scholar
  53. Peters EC (1984) A survey of cellular reactions to environmental stress and disease in Caribbean scleractinian corals. Helgol Mar Res 37:113–137Google Scholar
  54. Plattner F, Soldati-Favre D (2008) Hijacking of host cellular functions by the Apicomplexa. Annu Rev Microbiol 62:471–487PubMedCrossRefGoogle Scholar
  55. Pluthero FG (1993) Rapid purification of high-activity Taq DNA polymerase. Nucleic Acids Res 21:4850–4851PubMedCrossRefGoogle Scholar
  56. Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30PubMedCrossRefGoogle Scholar
  57. Prokopowicz AJ, Rueckert S, Leander BS, Michaud J, Fortier L (2010) Parasitic infection of the hyperiid amphipod Themisto libellula in the Canadian Beaufort Sea (Arctic Ocean), with a description of Ganymedes themistos sp. n. (Apicomplexa, Eugregarinorida). Polar Biol 33:1339–1350CrossRefGoogle Scholar
  58. Reiczigel J (2003) Confidence intervals for the binomial parameter: some new considerations. Stat Med 22:611–621PubMedCrossRefGoogle Scholar
  59. Reshef L, Koren O, Loya Y, Zllber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073PubMedCrossRefGoogle Scholar
  60. Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14CrossRefGoogle Scholar
  61. Rohwer FL, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10CrossRefGoogle Scholar
  62. Rosenberg E, Koren O, Reshef L, Efrony R, Rosenberg I-K (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362PubMedCrossRefGoogle Scholar
  63. Rowan R, Powers DA (1991) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser 71:65–73CrossRefGoogle Scholar
  64. Rózsa L, Reiczigel J, Majoros G (2000) Quantifying parasites in samples of hosts. J Parasitol 86:228–232PubMedGoogle Scholar
  65. Ruxton GD, Beauchamp G (2008) Time for some a priori thinking about post hoc testing. Behav Ecol 19:690–693CrossRefGoogle Scholar
  66. Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated bacteria. Environ Microbiol 12:28–39PubMedCrossRefGoogle Scholar
  67. Santos SR, Taylor DJ, Kinzie RA, Hidaka M, Sakai K, Coffroth MA (2002) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol Phylogenet Evol 23:97–111PubMedCrossRefGoogle Scholar
  68. Sawyer TK, Newman MW, Otto SA (1973) Seasonal pathology in the American oyster associated with a gregarine-like intestinal parasite. J Protozool 20:511Google Scholar
  69. Schultz A, Underhill LG, Earlé R, Underhil G (2011) Seasonality, distribution and taxonomic status of avian haemosporidian parasites within the Greater Cape Town area, South Africa. Ostrich 82:141–154CrossRefGoogle Scholar
  70. Scott JS (1981) Alimentary tract parasites of haddock (Melanogrammus aeglefinus L.) on the Scotian shelf. Can J Zool 59:2244–2252CrossRefGoogle Scholar
  71. Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol 67:371–380PubMedCrossRefGoogle Scholar
  72. Sibley LD (2004) Intracellular parasite invasion strategies. Science 204:248–253CrossRefGoogle Scholar
  73. Smallridge CJ, Bull CM (2000) Prevalence and intensity of the blood parasite Hemolivia mariae in a field population of the skink Tiliqua rugosa. Parasitol Res 86:655–660PubMedCrossRefGoogle Scholar
  74. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217PubMedCrossRefGoogle Scholar
  75. Théodoridès J, Desportes I (1975) Sporozoaires d’invertébrés pélagiques de Villefranche-Sur-Mer (étude descriptive et faunistique). Protistologica 11:205–220Google Scholar
  76. Thornhill DJ, Fitt WK, Schmidt GW (2006a) Highly stable symbioses among western Atlantic brooding corals. Coral Reefs 25:515–519CrossRefGoogle Scholar
  77. Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006b) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722CrossRefGoogle Scholar
  78. Thornhill DJ, Xiang Y, Fitt WK, Santos SR (2009) Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS ONE 4:e6262PubMedCrossRefGoogle Scholar
  79. Thornhill DJ, Doubleday K, Kemp DW, Santos SR (2010) Host hybridization alters specificity of cnidarian-dinoflagellate associations. Mar Ecol Prog Ser 420:113–123CrossRefGoogle Scholar
  80. Thornhill DJ, Rotjan RD, Todd BD, Chilcoat GC, Iglesias-Prieto R, Kemp DW, LaJeunesse TC, Reynolds JM, Schmidt GW, Shannon T, Warner ME, Fitt WK (2011) A connection between colony biomass and death in Caribbean reef-building corals. PLoS ONE 6:e29535PubMedCrossRefGoogle Scholar
  81. Toller WW, Rowan R, Knowlton N (2002) Genetic evidence for a protozoan (phylum Apicomplexa) associated with corals of the Montastraea annularis species complex. Coral Reefs 21:143–146Google Scholar
  82. Tuntiwaranuruk C, Chalermwat K, Pongsakchat V, Meepool A, Upatham ES, Kruatrachue M (2008) Infection of Nematopsis oocysts in different size classes of the farmed mussel Perna viridis in Thailand. Aquaculture 281:12–16CrossRefGoogle Scholar
  83. Upton SJ, Peters EC (1986) A new and unusual species of coccidium (Apicomplexa: Agamococcidiorida) from Caribbean scleractinian corals. J Invertebr Pathol 47:184–193CrossRefGoogle Scholar
  84. van Oppen MJH, Palstra FP, Piquet AM, Miller DJ (2001) Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc R Soc Lond B 268:1759–1767CrossRefGoogle Scholar
  85. van Oppen MJH, Mieog JC, Sanchez CA, Fabricius KE (2005) Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Mol Ecol 14:2403–2417PubMedCrossRefGoogle Scholar
  86. Vilcins I-ME, Old JM, Deane E (2009) Detection of a Hepatozoon and spotted fever group Rickettsia species in the common marsupial tick (Ixodes tasmani) collected from wild Tasmanian devils (Sarcophilus harrisii), Tasmania. Vet Parasitol 162:23–31PubMedCrossRefGoogle Scholar
  87. Walker G, Dorrell RG, Schlacht A, Dacks JB (2011) Eukaryotic systematics: a user’s guide for cell biologists and parasitologists. Parasitology 138:1638–1663PubMedCrossRefGoogle Scholar
  88. Ward JR, Kim K, Harvell CD (2007) Temperature affects coral disease resistance and pathogen growth. Mar Ecol Prog Ser 329:115–121CrossRefGoogle Scholar
  89. Warner ME, Chilcoat GC, McFarland FK, Fitt WK (2002) Seasonal fluctuations in the photosynthetic capacity of photosystem II in symbiotic dinoflagellates in the Caribbean reef-building coral Montastraea. Mar Biol 141:31–38CrossRefGoogle Scholar
  90. Weatherhead PJ, Bennett GF (1992) Ecology of parasitism of brown-headed cowbirds by haematozoa. Can J Zool 70:1–7CrossRefGoogle Scholar
  91. Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • N. L. Kirk
    • 1
    Email author
  • D. J. Thornhill
    • 2
  • D. W. Kemp
    • 3
  • W. K. Fitt
    • 3
  • S. R. Santos
    • 1
    • 4
  1. 1.Department of Biological Sciences, 101 Life SciencesAuburn UniversityAuburnUSA
  2. 2.Department of Conservation Science and PolicyDefenders of WildlifeWashingtonUSA
  3. 3.Odum School of EcologyUniversity of GeorgiaAthensUSA
  4. 4.Cell and Molecular Biosciences Peak ProgramAuburn UniversityAuburnUSA

Personalised recommendations