Coral Reefs

, Volume 32, Issue 2, pp 463–474 | Cite as

Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae

  • E. G. Smith
  • C. D’Angelo
  • A. Salih
  • J. Wiedenmann
Report

Abstract

Green fluorescent protein (GFP)-like pigments are responsible for the vivid colouration of many reef-building corals and have been proposed to act as photoprotectants. Their role remains controversial because the functional mechanism has not been elucidated. We provide direct evidence to support a photoprotective role of the non-fluorescent chromoproteins (CPs) that form a biochemically and photophysically distinct group of GFP-like proteins. Based on observations of Acropora nobilis from the Great Barrier Reef, we explored the photoprotective role of CPs by analysing five coral species under controlled conditions. In vitro and in hospite analyses of chlorophyll excitation demonstrate that screening by CPs leads to a reduction in chlorophyll excitation corresponding to the spectral properties of the specific CPs present in the coral tissues. Between 562 and 586 nm, the CPs maximal absorption range, there was an up to 50 % reduction of chlorophyll excitation. The screening was consistent for established and regenerating tissue and amongst symbiont clades A, C and D. Moreover, among two differently pigmented morphs of Acropora valida grown under identical light conditions and hosting subclade type C3 symbionts, high CP expression correlated with reduced photodamage under acute light stress.

Keywords

Green fluorescent protein (GFP)-like proteins Chromoproteins Function Photoprotection Growth Coral-zooxanthellae symbiosis 

Supplementary material

338_2012_994_MOESM1_ESM.tif (1.6 mb)
ESM Figure S1. Analysis of blue and brown morphs of Acropora nobilis from the Great Barrier Reef. (a) Photograph of the two morphs side-by-side on the reef. The white arrow indicates a light exposed branch whereas the dark arrow shows a branch that is subject to self shading within the blue morph colony. (b, c) Mean zooxanthellae densities (b) and pigment concentrations (c) from five replicate colonies collected at 1.5 m. Error bars indicate the ±SD of the mean (TIFF 1678 kb)
338_2012_994_MOESM2_ESM.tif (8.6 mb)
ESM Figure S2. Optical properties of the light sources used in this study. The normalised spectral output of the metal halide burners used for growing the aquarium corals and the amber LEDs used for the high irradiance experiments. The absorption spectrum for avalCP580 is shown to demonstrate the overlap between the LED output and the absorption of the CP (TIFF 8770 kb)
338_2012_994_MOESM3_ESM.tif (171 kb)
ESM Figure S3. Absorption spectra of CPs isolated and purified from the corals Seriatopora hystrix (shysCP562), Montipora foliosa (mfolCP577), Acropora valida (avalCP580), Acropora nobilis (anobCP582), Acropora polystoma (apolCP584) and Acropora millepora (amilCP586). Spectra are normalised to a peak height of 1.0 (TIFF 171 kb)
338_2012_994_MOESM4_ESM.tif (3.3 mb)
ESM Figure S4. Localisation of avalCP580 in the purple morph of Acropora valida. (a) Micrograph of a cross section of an A. valida tip showing the localisation of the purple chromoprotein. (b) Fluorescent image of the corresponding cross section showing the presence of ectodermal green fluorescent proteins (green) and chlorophyll fluorescence from the zooxanthellae (red) (TIFF 3353 kb)
338_2012_994_MOESM5_ESM.tif (1.8 mb)
ESM Figure S5. Characterisation of chromoproteins in growth regions. (a) Photograph of two Montipora foliosa morphs expressing (right) and not expressing (left) chromoproteins in the colony margins. (b, c) Mean estimated absorbance spectra of the brown (b) and purple morphs (c) at the centre and growth margins of the colonies. Dotted lines indicate the ±SD of 5 independent measurements. (d, e) Excitation difference spectra for the brown (d) and purple (e) morphs. The absorption spectra of mfolCP577 are shown for reference (TIFF 1799 kb)
338_2012_994_MOESM6_ESM.tif (395 kb)
ESM Figure S6. Reflectance spectra of regenerating zones in Acropora polystoma. The solid lines show the mean reflectance of the high and low light regeneration zones with the standard deviations of 5 measurements shown by the dotted lines. The absorption spectrum of apolCP584 is shown for comparison (TIFF 394 kb)
338_2012_994_MOESM7_ESM.tif (671 kb)
ESM Figure S7. Excitation and emission properties of the brown and purple colour morphs of Acropora valida. (a, b) Excitation-emission plot for the brown (a) and purple (b) morphs. The excitation spectra are sampled at 1 nm intervals and the emission spectra are sampled every 5 nm. (c) Difference spectrum peak values across the chlorophyll emission range. The mean peak wavelength of the difference spectrum is 579 nm with a standard deviation of 1 nm and the respective CP absorption peak is at 580 nm (TIFF 671 kb)
338_2012_994_MOESM8_ESM.doc (30 kb)
Supplementary material 8 (DOC 30 kb)

References

  1. Alieva NO, Konzen KA, Field SF, Meleshkevitch EA, Hunt ME, Beltran-Ramirez V, Miller DJ, Wiedenmann J, Salih A, Matz MV (2008) Diversity and evolution of coral fluorescent proteins. PLoS ONE 3:e2680PubMedCrossRefGoogle Scholar
  2. Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20PubMedCrossRefGoogle Scholar
  3. Brown BE, Ambarsari I, Warner ME, Fitt WK, Dunne RP, Gibb SW, Cummings DG (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals : evidence for photoinhibition and photoprotection. Coral Reefs 18:99–105CrossRefGoogle Scholar
  4. D’Angelo C, Smith E, Oswald F, Burt J, Tchernov D, Wiedenmann J (2012) Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments. Coral Reefs 31(4):1045–1056 [doi:10.1007/s00338-012-0926-8]
  5. D’Angelo C, Wiedenmann J (2012) An experimental mesocosm for long-term studies of reef corals. J Mar Biol Assoc UK 92:769–775CrossRefGoogle Scholar
  6. D’Angelo C, Denzel A, Vogt A, Matz MV, Oswald F, Salih A, Nienhaus GU, Wiedenmann J (2008) Blue light regulation of host pigment in reef-building corals. Mar Ecol Prog Ser 364:97–106CrossRefGoogle Scholar
  7. Dove SG, Hoegh-Guldberg O, Ranganathan S (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19:197–204CrossRefGoogle Scholar
  8. Dove SG, Lovell C, Fine M, Deckenback J, Hoegh-Guldberg O, Iglesias-Prieto R, Anthony KR (2008) Host pigments: potential facilitators of photosynthesis in coral symbioses. Plant, Cell Environ 31:1523–1533CrossRefGoogle Scholar
  9. Dustan P (1982) Depth-dependent photoadaption by zooxanthellae of the reef coral Montastrea annularis. Mar Biol 68:253–264CrossRefGoogle Scholar
  10. Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032CrossRefGoogle Scholar
  11. Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174CrossRefGoogle Scholar
  12. Falkowski PG, Jokiel PL, Kinzie RA (1990) Irradiance and corals. In: Dubinsky Z (ed) Coral reefs: Ecosystems of the world. Elsevier Science, Amsterdam, pp89-107Google Scholar
  13. Franklin DJ, Hoegh-Guldberg O, Jones RJ, Berges JA (2004) Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching. Mar Ecol Prog Ser 272:117–130CrossRefGoogle Scholar
  14. Gorbunov MY, Kolber ZS, Lesser MP, Falkowski PG (2001) Photosynthesis and photoprotection in symbiotic corals. Limnol Oceanogr 46:75–85CrossRefGoogle Scholar
  15. Hakala M, Tuominen I, Keränen M, Tyystjärvi T, Tyystjärvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II. Biochim Biophys Acta (BBA) -. Bioenergetics 1706:68–80CrossRefGoogle Scholar
  16. Hartle-Mougiou K, D’Angelo C, Smith EG, Burt J, West P, Wiedenmann J (2012) Diversity of zooxanthellae from corals and sea anemones after long-term aquarium culture. J Mar Biol Assoc UK 92:687–691CrossRefGoogle Scholar
  17. Hennige SJ, Smith DJ, Perkins R, Consalvey M, Paterson DM, Suggett DJ (2008) Photoacclimation, growth and distribution of massive coral species in clear and turbid waters. Mar Ecol Prog Ser 369:77–88CrossRefGoogle Scholar
  18. Hennige S, Suggett D, Warner M, McDougall K, Smith D (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195CrossRefGoogle Scholar
  19. Hochberg EJ, Atkinson MJ, Apprill A, Andrefouet S (2004) Spectral reflectance of coral. Coral Reefs 23:84–95CrossRefGoogle Scholar
  20. Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc Natl Acad Sci USA 89:10302–10305PubMedCrossRefGoogle Scholar
  21. Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc B Biol Sci 271:1757–1763CrossRefGoogle Scholar
  22. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167:191–194Google Scholar
  23. Kaniewska P, Campbell PR, Fine M, Hoegh-Guldberg O (2009) Phototropic growth in a reef flat acroporid branching coral species. J Exp Biol 212:662–667PubMedCrossRefGoogle Scholar
  24. Kaniewska P, Magnusson SH, Anthony KRN, Reef R, Kühl M, Hoegh-Guldberg O (2011) Importance of macro- versus microstructure in modulating light levels inside coral colonies. J Phycol 47:846–860CrossRefGoogle Scholar
  25. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Kuhl M, Cohen Y, Dalsgaard T, Jorgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172CrossRefGoogle Scholar
  27. LaJeunesse T (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  28. Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278PubMedCrossRefGoogle Scholar
  29. Lesser MP, Mazel C, Phinney D, Yentsch CS (2000) Light absorption and utilization by colonies of the congeneric hermatypic corals Montastraea faveolata and Montastraea cavernosa. Limnol Oceanogr 45:76–86CrossRefGoogle Scholar
  30. Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003PubMedCrossRefGoogle Scholar
  31. Leutenegger A, Kredel S, Gundel S, D’Angelo C, Salih A, Wiedenmann J (2007a) Analysis of fluorescent and non-fluorescent sea anemones from the Mediterranean Sea during a bleaching event. J Exp Mar Biol Ecol 353:221–234CrossRefGoogle Scholar
  32. Leutenegger A, D’Angelo C, Matz MV, Denzel A, Oswald F, Salih A, Nienhaus GU, Wiedenmann J (2007b) It’s cheap to be colorful. Anthozoans show a slow turnover of GFP-like proteins. FEBS J 274:2496–2505PubMedCrossRefGoogle Scholar
  33. Levy O (2003) Photobehavior of stony corals: responses to light spectra and intensity. J Exp Biol 206:4041–4049PubMedCrossRefGoogle Scholar
  34. Levy O, Dubinsky Z, Schneider K, Achituv Y, Zakai D, Gorbunov MY (2004) Diurnal hysteresis in coral photosynthesis. Mar Ecol Prog Ser 268:105–117Google Scholar
  35. Levy O, Achituv Y, Yacobi YZ, Stambler N, Dubinsky Z (2006) The impact of spectral composition and light periodicity on the activity of two antioxidant enzymes (SOD and CAT) in the coral Favia favus. J Exp Mar Biol Ecol 328:35–46CrossRefGoogle Scholar
  36. Liakopoulos G, Nikopoulos D, Klouvatou A, Vekkos K-A, Manetas Y, Karabourniotis G (2006) The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis vinifera). Ann Bot 98:257–265PubMedCrossRefGoogle Scholar
  37. Marsh JA Jr (1970) Primary productivity of reef-building calcareous red algae. Ecology 51:255–263CrossRefGoogle Scholar
  38. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973PubMedCrossRefGoogle Scholar
  39. Mazel CH, Lesser MP, Gorbunov MY, Barry TM, Farrell JH, Wyman KD, Falkowski PG (2003) Green-fluorescent proteins in Caribbean corals. Limnol Oceanogr 48:402–411CrossRefGoogle Scholar
  40. McCabe Reynolds J, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc Natl Acad Sci USA 105:13674–13678CrossRefGoogle Scholar
  41. Merzlyak MN, Melø TB, Naqvi KR (2008) Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: signature analysis, assessment, modelling, and relevance to photoprotection. J Exp Bot 59:349–359PubMedCrossRefGoogle Scholar
  42. Nienhaus GU, Wiedenmann J (2009) Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. ChemPhysChem 10:1369–1379PubMedCrossRefGoogle Scholar
  43. Parsons TR, Strickland JDH (1963) Discussion of spectrophotometric determination of marine-plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. J Mar Res 21:155–163Google Scholar
  44. Salih A, Hoegh-Guldberg O, Cox G (1998) Photoprotection of symbiotic dinoflagellates by fluorescent pigments in reef corals. Proceedings of the Australian Coral Reef Society 75th Anniversary Conference School of Marine Science, The University of Queensland, Brisbane, pp217-230Google Scholar
  45. Salih A, Larkum A, Cox G, Kuhl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853PubMedCrossRefGoogle Scholar
  46. Salih A, Cox G, Szymczak R, Coles S, Baird A, Dunstan A, Cocco G, Mills J, Larkum A (2006) The role of host-based color and fluorescent pigments in photoprotection and in reducing bleaching stress in corals. Proc 10th Int Coral Reef Symp:746-756Google Scholar
  47. Smith DJ, Suggett DJ, Baker NR (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biol 11:1–11CrossRefGoogle Scholar
  48. Stambler N, Dubinsky Z (2005) Corals as light collectors: an integrating sphere approach. Coral Reefs 24:1–9CrossRefGoogle Scholar
  49. Takahashi S, Whitney SM, Badger MR (2009) Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. Proc Natl Acad Sci USA 106:3237–3242PubMedCrossRefGoogle Scholar
  50. Takahashi S, Milward SE, Yamori W, Evans JR, Hillier W, Badger MR (2010) The solar action spectrum of Photosystem II damage. Plant Physiol 153:988–993PubMedCrossRefGoogle Scholar
  51. Tchernov D, Gorbunov MY, de Vargas C, Narayan Yadav S, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535PubMedCrossRefGoogle Scholar
  52. Terán E, Méndez ER, Enríquez S, Iglesias-Prieto R (2010) Multiple light scattering and absorption in reef-building corals. Appl Opt 49:5032–5042PubMedCrossRefGoogle Scholar
  53. Veal CJ, Carmi M, Dishon G, Sharon Y, Michael K, Tchernov D, Hoegh-Guldberg O, Fine M (2010) Shallow-water wave lensing in coral reefs: a physical and biological case study. J Exp Biol 213:4304–4312PubMedCrossRefGoogle Scholar
  54. Visram S, Wiedenmann J, Douglas AE (2006) Molecular diversity of symbiotic algae of the genus Symbiodinium (Zooxanthellae) in cnidarians of the Mediterranean Sea. J Mar Biol Assoc UK 86:1281–1283CrossRefGoogle Scholar
  55. Vogt A, D’Angelo C, Oswald F, Denzel A, Mazel CH, Matz MV, Ivanchenko S, Nienhaus GU, Wiedenmann J (2008) A green fluorescent protein with photoswitchable emission from the deep sea. PLoS ONE 3:e3766PubMedCrossRefGoogle Scholar
  56. Warner ME, Fitt WK, Schmidt GW (1996) The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant, Cell Environ 19:291–299CrossRefGoogle Scholar
  57. Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012PubMedCrossRefGoogle Scholar
  58. Warner ME, Lesser MP, Ralph PJ (2010) Chlorophyll fluorescence in reef building corals. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Netherlands, pp209-222Google Scholar
  59. Wiedenmann J, Rocker C, Funke W (1999) The morphs of Anemonia aff. sulcata (Cnidaria, Anthozoa) in particular consideration of the ectodermal pigments. In: Pfadenhauer J (ed) Verhandlungen der Gesellschaft für Ökologie. Spektrum Akademischer Verlag, Heidelberg, pp 497–503Google Scholar
  60. Wiedenmann J, Elke C, Spindler KD, Funke W (2000) Cracks in the beta-can: fluorescent proteins from Anemonia sulcata (Anthozoa, Actinaria). Proc Natl Acad Sci USA 97:14091–14096PubMedCrossRefGoogle Scholar
  61. Wiedenmann J, Schenk A, Rocker C, Girod A, Spindler KD, Nienhaus GU (2002) A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc Natl Acad Sci USA 99:11646–11651PubMedCrossRefGoogle Scholar
  62. Wiedenmann J, Ivanchenko S, Oswald F, Nienhaus GU (2004a) Identification of GFP-like proteins in nonbioluminescent, azooxanthellate anthozoa opens new perspectives for bioprospecting. Mar Biotechnol (NY) 6:270–277CrossRefGoogle Scholar
  63. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C, Salih A, Spindler KD, Nienhaus GU (2004b) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci USA 101:15905–15910PubMedCrossRefGoogle Scholar
  64. Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret FE, Postle AD, Achterberg, EP (2012) Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nature Climate Change [doi:10.1038/nclimate1661]

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • E. G. Smith
    • 1
    • 4
  • C. D’Angelo
    • 1
  • A. Salih
    • 2
  • J. Wiedenmann
    • 3
  1. 1.National Oceanography CentreUniversity of SouthamptonSouthamptonUK
  2. 2.School of Science and Health, University of Western SydneySydneyAustralia
  3. 3.Ocean and Earth ScienceNational Oceanography Centre, Southampton/University of SouthamptonSouthamptonUK
  4. 4.New York University, Abu DhabiAbu DhabiUAE

Personalised recommendations