Coral Reefs

, Volume 31, Issue 4, pp 1177–1192

Gene expression patterns of the coral Acropora millepora in response to contact with macroalgae

  • T. L. Shearer
  • D. B. Rasher
  • T. W. Snell
  • M. E. Hay


Contact with macroalgae often causes coral mortality, but the roles of abrasion versus shading versus allelopathy in these interactions are rarely clear, and effects on gene expression are unknown. Identification of gene expression changes within corals in response to contact with macroalgae can provide insight into the mode of action of allelochemicals, as well as reveal transcriptional strategies of the coral that mitigate damage from this competitive interaction, enabling the coral to survive. Gene expression responses of the coral Acropora millepora after long-term (20 days) direct contact with macroalgae (Chlorodesmis fastigiata, Dictyota bartayresiana, Galaxaura filamentosa, and Turbinaria conoides) and short-term (1 and 24 h) exposure to C. fastigiata thalli and their hydrophobic extract were assessed. After 20 days of exposure, T. conoides thalli elicited no significant change in visual bleaching or zooxanthellae PSII quantum yield within A. millepora nubbins, but stimulated the greatest alteration in gene expression of all treatments. Chlorodesmis fastigiata, D. bartayresiana, and G. filamentosa caused significant visual bleaching of coral nubbins and reduced the PSII quantum yield of associated zooxanthellae after 20 days, but elicited fewer changes in gene expression relative to T. conoides at day 20. To evaluate initial molecular processes leading to reduction of zooxanthella PSII quantum yield, visual bleaching, and coral death, short-term exposures to C. fastigiata thalli and hydrophobic extracts were conducted; these interactions revealed protein degradation and significant changes in catalytic and metabolic activity within 24 h of contact. These molecular responses are consistent with the hypothesis that allelopathic interactions lead to alteration of signal transduction and an imbalance between reactive oxidant species production and antioxidant capabilities within the coral holobiont. This oxidative imbalance results in rapid protein degradation and eventually to apoptosis and/or necrosis when compensatory transcriptional action by the coral holobiont insufficiently mitigates damage by the allelochemicals of C. fastigiata.


Allelopathy Coral–algal competition Gene expression Fiji 

Supplementary material

338_2012_943_MOESM1_ESM.doc (872 kb)
Supplementary material 1 (DOC 872 kb)


  1. Ainsworth TD, Hoegh-Guldberg O (2008) Cellular processes of bleaching in the Mediterranean coral Oculina patagonica. Coral Reefs 27:593–597CrossRefGoogle Scholar
  2. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29PubMedCrossRefGoogle Scholar
  3. Augustin R, Bosch TCG (2011) Cnidarian immunity: A tale of two barriers. In: Söderhäll K (ed) Invertebrate immunity. Landes Bioscience and Springer Science Business Media, pp 1–16Google Scholar
  4. Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science 301:1377–1380PubMedCrossRefGoogle Scholar
  5. Bellwood DR, Hughes TP, Folke C, Nystrom M (2004) Confronting the coral reef crisis. Nature 429:827–833PubMedCrossRefGoogle Scholar
  6. Ben-Haim Y, Rosenberg E (2002) A novel Vibrio sp pathogen of the coral Pocillopora damicornis. Mar Biol 141:47–55CrossRefGoogle Scholar
  7. Ben-Haim Y, Zicherman-Keren M, Rosenberg E (2003) Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl Environ Microbiol 69:4236–4242PubMedCrossRefGoogle Scholar
  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300Google Scholar
  9. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316PubMedCrossRefGoogle Scholar
  10. Birrell CL, McCook LJ, Willis BL, Diaz-Pulido GA (2008a) Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. Oceanogr Mar Biol Annu Rev 46:25–63CrossRefGoogle Scholar
  11. Birrell CL, McCook LJ, Willis BL, Harrington L (2008b) Chemical effects of macroalgae on larval settlement of the broadcast spawning coral Acropora millepora. Mar Ecol Prog Ser 362:129–137CrossRefGoogle Scholar
  12. Box SJ, Mumby PJ (2007) Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar Ecol Prog Ser 342:139–149CrossRefGoogle Scholar
  13. Bruno JF, Selig ER, Casey KS, Page CA, Willis BL, Harvell CD, Sweatman H, Melendy AM (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol 5:1220–1227CrossRefGoogle Scholar
  14. Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortes J, Delbeek JC, DeVantier L, Edgar GJ, Edwards AJ, Fenner D, Guzman HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563PubMedCrossRefGoogle Scholar
  15. Conesa A, Gotz S, Garcia-Gomez JM, Terol T, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676PubMedCrossRefGoogle Scholar
  16. Csaszar NBM, Seneca FO, van Oppen MJH (2009) Variation in antioxidant gene expression in the scleractinian coral Acropora millepora under laboratory thermal stress. Mar Ecol Prog Ser 392:93–102CrossRefGoogle Scholar
  17. de Nys R, Coll JC, Price IR (1991) Chemically mediated interactions between the red alga Plocamium hamatum (Rhodophyta) and the octocoral Sinularia cruciata (Alcyonacea). Mar Biol 108:315–320CrossRefGoogle Scholar
  18. Diaz-Pulido G, Harii S, McCook LJ, Hoegh-Guldberg O (2010) The impact of benthic algae on the settlement of a reef building coral. Coral Reefs 29:203–208CrossRefGoogle Scholar
  19. Douglas AE (2003) Coral bleaching - how and why? Mar Pollut Bull 46:385–392PubMedCrossRefGoogle Scholar
  20. Dunn SR, Schnitzler CE, Weis VM (2007) Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: Every which way you lose. Proc R Soc Lond Biol 274:3079–3085CrossRefGoogle Scholar
  21. Dykens JA, Shick JM, Benoit C, Buettner GR, Winston GW (1992) Oxygen radical production in the sea anemone Anthopleura elegantissima and its endosymbiotic algae. J Exp Biol 168:219–241Google Scholar
  22. Edge SE (2007) Using microarrays to quantify stress responses in natural populations of coral. Ph.D. dissertation, Georgia Institute of Technology, p 164Google Scholar
  23. Edge SE, Morgan MB, Gleason DF, Snell TW (2005) Development of a coral cDNA array to examine gene expression profiles in Montastraea faveolata exposed to environmental stress. Mar Pollut Bull 51:507–523PubMedCrossRefGoogle Scholar
  24. Feder ME, Walser JC (2005) The biological limitations of transcriptomics in elucidating stress and stress responses. J Evol Biol 18:901–910PubMedCrossRefGoogle Scholar
  25. Finkel T (1999) Signal transduction by reactive oxygen species in non-phagocytic cells. J Leukocyte Biol 65:337–340PubMedGoogle Scholar
  26. Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65CrossRefGoogle Scholar
  27. Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, Gomez M, Fisher P, Lajuenesse TC, Pantos O, Iglesias-Prieto R, Franklin DJ, Rodrigues LJ, Torregiani JM, van Woesik R, Lesser MP (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110CrossRefGoogle Scholar
  28. Foster NL, Box SJ, Mumby PJ (2008) Competitive effects of macroalgae on the fecundity of the reef-building coral Montastraea annularis. Mar Ecol Prog Ser 367:143–152CrossRefGoogle Scholar
  29. Franklin DJ, Hoegh-Guldberg P, Jones RJ, Berges JA (2004) Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching. Mar Ecol Prog Ser 272:117–130CrossRefGoogle Scholar
  30. Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960PubMedCrossRefGoogle Scholar
  31. Glynn PW (1991) Coral reef bleaching in the 1980 s and possible connections with global warming. TREE 6:175–177PubMedGoogle Scholar
  32. Glynn PW, D’Croz L (1990) Experimental evidence for high temperature stress as the cause of El Nino-coincident coral mortality. Coral Reefs 8:181–191CrossRefGoogle Scholar
  33. Hay ME (2009) Marine chemical ecology: Chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1:193–212CrossRefGoogle Scholar
  34. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA (2000) Reactive oxygen species, cell signaling, and cell injury. Free Radical Biol Med 28:1456–1462CrossRefGoogle Scholar
  35. Hoegh-Guldberg O, Smith GJ (1989) Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Mar Ecol Prog Ser 57:173–186CrossRefGoogle Scholar
  36. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742PubMedCrossRefGoogle Scholar
  37. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638PubMedCrossRefGoogle Scholar
  38. Jompa J, McCook LJ (2002) The effects of nutrients and herbivory on competition between a hard coral (Porites cylindrica) and a brown alga (Lobophora variegata). Limnol Oceanogr 47:527–534CrossRefGoogle Scholar
  39. Jompa J, McCook LJ (2003) Coral-algal competition: macroalgae with different properties have different effects on corals. Mar Ecol Prog Ser 258:87–95CrossRefGoogle Scholar
  40. Kleppel GS, Dodge RE, Reese CJ (1989) Changes in pigmentation associated with the bleaching of stony corals. Limnol Oceanogr 34:1331–1335CrossRefGoogle Scholar
  41. Kuffner IB, Walters LJ, Becerro MA, Paul VJ, Ritson-Williams R, Beach KS (2006) Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar Ecol Prog Ser 323:107–117CrossRefGoogle Scholar
  42. Kushmaro A, Loya Y, Fine M, Rosenberg E (1996) Bacterial infection and coral bleaching. Nature 380:396–396CrossRefGoogle Scholar
  43. Kushmaro A, Rosenberg E, Fine M, Loya Y (1997) Bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar Ecol Prog Ser 147:159–165CrossRefGoogle Scholar
  44. Kushmaro A, Rosenberg E, Fine M, Ben Haim Y, Loya Y (1998) Effect of temperature on bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar Ecol Prog Ser 171:131–137CrossRefGoogle Scholar
  45. Kushmaro A, Banin E, Loya Y, Stackebrandt E, Rosenberg E (2001) Vibrio shiloi sp nov., the causative agent of bleaching of the coral Oculina patagonica. Int J Syst Evol Microbiol 51:1383–1388PubMedGoogle Scholar
  46. Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 43:271–283CrossRefGoogle Scholar
  47. Lesser MP (2006) Oxidative stress in marine environments: Biochemistry and physiological ecology. Annu Rev Physiol 68:253–278PubMedCrossRefGoogle Scholar
  48. Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23:367–377CrossRefGoogle Scholar
  49. Lesser MP, Stochaj WR, Tapley DW, Shick JM (1990) Bleaching in coral reef anthozoans: Effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8:225–232CrossRefGoogle Scholar
  50. Maliao RJ, Turingan RG, Lin J (2008) Phase-shift in coral reef communities in the Florida Keys National Marine Sanctuary (FKNMS), USA. Mar Biol 154:841–853CrossRefGoogle Scholar
  51. Martin R, Carvalho J, Ilbeas E, Hernandez M, Ruiz-Gutierrez V, Nieto ML (2007) Acidic triterpenes compromise growth and survival of astrocytoma cell lines by regulating reactive oxygen species accumulation. Cancer Res 67:3741–3751PubMedCrossRefGoogle Scholar
  52. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: Signaling for suicide and survival. J Cell Physiol 192:1–15PubMedCrossRefGoogle Scholar
  53. Mates JM, Segura JA, Alonso FJ, Marquez J (2008) Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol 82:273–299PubMedCrossRefGoogle Scholar
  54. McCook LJ, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417CrossRefGoogle Scholar
  55. Meriin AB, Yaglom JA, Gabai VL, Mosser DD, Zon L, Sherman MY (1999) Protein-damaging stresses activate c-Jun N-terminal kinase via inhibition of its dephosphorylation: A novel pathway controlled by HSP72. Mol Cell Biol 19:2547–2555PubMedGoogle Scholar
  56. Mitchelmore CL, Schwarz JA, Weis VM (2002) Development of symbiosis-specific genes as biomarkers for the early detection of cnidarian-algal symbiosis breakdown. Mar Environ Res 54:345–349PubMedCrossRefGoogle Scholar
  57. Morgan MB, Snell TW (2002) Characterizing stress gene expression in reef-building corals exposed to the mosquitoside dibrom. Mar Pollut Bull 44:1206–1218PubMedCrossRefGoogle Scholar
  58. Morgan MB, Vogelien DL, Snell TW (2001) Assessing coral stress responses using molecular biomarkers of gene transcription. Environ Toxicol Chem 20:537–543PubMedCrossRefGoogle Scholar
  59. Mumby PJ, Steneck RS (2008) Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends Ecol Evol 23:555–563PubMedCrossRefGoogle Scholar
  60. Mydlarz LD, Jacobs RS (2004) Comparison of an inducible oxidative burst in free-living and symbiotic dinoflagellates reveals properties of the pseudopterosins. Phytochemistry 65:3231–3241PubMedCrossRefGoogle Scholar
  61. Nii CM, Muscatine L (1997) Oxidative stress in the symbiotic sea anemone Aiptasia pulchella (Carlgren, 1943): Contribution of the animal to superoxide ion production at elevated temperature. Biol Bull 192:444–456CrossRefGoogle Scholar
  62. Paul VJ, Riston-Williams R, Sharp K (2011a) Marine chemical ecology in benthic environments. Nat Prod Rep 28:345–387PubMedCrossRefGoogle Scholar
  63. Paul VJ, Kuffner IB, Walters LJ, Ritson-Williams R, Beach KS, Becerro MA (2011b) Chemically mediated interactions between macroalgae Dictyota spp. and multiple life-history stages of the coral Porites astreoides. Mar Ecol Prog Ser 426:161–170CrossRefGoogle Scholar
  64. Pawlik JR, Steindler L, Henkel TP, Beer S, Ilan M (2007) Chemical warfare on coral reefs: Sponge metabolites differentially affect coral symbiosis in situ. Limnol Oceanogr 52:907–911CrossRefGoogle Scholar
  65. Peres A, Churchman ML, Hariharan S, Himanen K, Verkest A, Vandepoele K, Magyar Z, Hatzfeld Y, Van Der Schueren E, Beemster GTS, Frankard V, Larkin JC, Inze D, De Veylder L (2007) Novel plant-specific cyclin-dependent kinase inhibitors induced by biotic and abiotic stresses. J Biol Chem 282:25588–25596PubMedCrossRefGoogle Scholar
  66. Rasher DB, Hay ME (2010) Chemically rich seaweeds poison corals when not controlled by herbivores. Proc Natl Acad Sci U S A 107:9683–9688PubMedCrossRefGoogle Scholar
  67. Rasher DB, Stout EP, Engel MS, Kubanek J, Hay ME (2011) Macroalgal terpenes function as allelopathic agents against reef corals. Proc Natl Acad Sci U S A 108:17726–17731PubMedCrossRefGoogle Scholar
  68. Rodriguez-Lanetty M, Harii S, Hoegh-Guldberg O (2009) Early molecular responses of coral larvae to hyperthermal stress. Mol Ecol 18:5101–5114PubMedCrossRefGoogle Scholar
  69. Rudrappa T, Bonsall J, Bais HP (2007) Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J Chem Ecol 33:1898–1918PubMedCrossRefGoogle Scholar
  70. Sherman MY, Goldberg AL (2001) Cellular defenses against unfolded proteins: A cell biologist thinks about neurodegenerative diseases. Neuron 29:15–32PubMedCrossRefGoogle Scholar
  71. Smith JE, Shaw M, Edwards RA, Obura D, Pantos O, Sala E, Sandin SA, Smriga S, Hatay M, Rohwer FL (2006) Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol Lett 9:835–845PubMedCrossRefGoogle Scholar
  72. Starcevic A, Dunlap WC, Cullum J, Shick JM, Hranueli D, Long PF (2010) Gene expression in the scleractinian Acropora microphthalma exposed to high solar irradiance reveals elements of photoprotection and coral bleaching. PLoS ONE 5:1–10CrossRefGoogle Scholar
  73. Steen RG, Muscatine L (1987) Low temperature evokes rapid exocytosis of symbiotic algae by a sea anemone. Biol Bull 172:246–263CrossRefGoogle Scholar
  74. Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes IW (2004) Cells have distinct mechanisms to maintain protection against different reactive oxygen species: Oxidative-stress-response genes. Proc Natl Acad Sci U S A 101:6564–6569PubMedCrossRefGoogle Scholar
  75. Titlyanov EA, Yakovleva IM, Titlyanova TV (2007) Interaction between benthic algae (Lyngbya bouillonii, Dictyota dichotoma) and scleractinian coral Porites lutea in direct contact. J Exp Mar Biol Ecol 342:282–291CrossRefGoogle Scholar
  76. Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080PubMedCrossRefGoogle Scholar
  77. Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012PubMedCrossRefGoogle Scholar
  78. Warner ME, Lesser MP, Ralph P (2010) Chlorophyll fluorescence in reef building corals. In: Suggett D, Prasil O, Borowitzka M (eds) Chlorophyll a fluorescence in aquatic sciences: Methods and applications. Springer, pp 209–222Google Scholar
  79. Weis VM (2008) Cellular mechanisms of cnidarian bleaching: Stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066PubMedCrossRefGoogle Scholar
  80. Zhang Y, Gu M, Shi K, Zhou YH, Yu JQ (2010) Effects of aqueous root extracts and hydrophobic root exudates of cucumber (Cucumis sativus L.) on nuclei DNA content and expression of cell cycle-related genes in cucumber radicles. Plant Soil 327:455–463CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • T. L. Shearer
    • 1
  • D. B. Rasher
    • 1
  • T. W. Snell
    • 1
  • M. E. Hay
    • 1
  1. 1.School of BiologyGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations