Coral Reefs

, Volume 31, Issue 3, pp 839–851 | Cite as

Twisted sister species of pygmy angelfishes: discordance between taxonomy, coloration, and phylogenetics

  • Joseph D. DiBattistaEmail author
  • Ellen Waldrop
  • Brian W. Bowen
  • Jennifer K. Schultz
  • Michelle R. Gaither
  • Richard L. Pyle
  • Luiz A. Rocha


The delineation of reef fish species by coloration is problematic, particularly for the pygmy angelfishes (genus Centropyge), whose vivid colors are sometimes the only characters available for taxonomic classification. The Lemonpeel Angelfish (Centropyge flavissima) has Pacific and Indian Ocean forms separated by approximately 3,000 km and slight differences in coloration. These disjunct populations hybridize with Eibl’s Angelfish (Centropyge eibli) in the eastern Indian Ocean and the Pearl-Scaled Angelfish (Centropyge vrolikii) in the western Pacific. To resolve the evolutionary history of these species and color morphs, we employed mitochondrial DNA (mtDNA) cytochrome b and three nuclear introns (TMO, RAG2, and S7). Phylogenetic analyses reveal three deep mtDNA lineages (d = 7.0–8.3 %) that conform not to species designation or color morph but to geographic region: (1) most Pacific C. flavissima plus C. vrolikii, (2) C. flavissima from the Society Islands in French Polynesia, and (3) Indian Ocean C. flavissima plus C. eibli. In contrast, the nuclear introns each show a cluster of closely related alleles, with frequency differences between the three geographic groups. Hence, the mtDNA phylogeny reveals a period of isolation (ca. 3.5–4.2 million years) typical of congeneric species, whereas the within-lineage mtDNA ΦST values and the nuclear DNA data reveal recent or ongoing gene flow between species. We conclude that an ancient divergence of C. flavissima, recorded in the non-recombining mtDNA, was subsequently swamped by introgression and hybridization in two of the three regions, with only the Society Islands retaining the original C. flavissima haplotypes among our sample locations. Alternatively, the yellow color pattern of C. flavissima may have appeared independently in the central Pacific Ocean and eastern Indian Ocean. Regardless of how the pattern arose, C. flavissima seems to be retaining species identity where it interbreeds with C. vrolikii and C. eibli, and sexual or natural selection may help to maintain color differences despite apparent gene flow.


Centropyge Color variation Coral reef fish Hybridization Incomplete lineage sorting Mitochondrial DNA Nuclear introns 



This research was supported by the National Science Foundation grants OCE-0453167 and OCE-0929031 to BWB, NOAA National Marine Sanctuaries Program MOA No. 2005-008/66882 to R.J. Toonen, and by a Natural Sciences and Engineering Research Council of Canada (NSERC) postgraduate fellowship to JDD. For specimen collections, we thank Kim Andersen, Paul Barber, Larry Basch, David Bellwood, J. Howard Choat, Matthew Craig, Joshua Drew, John Earle, Jeff Eble, Brian Greene, Matthew Iacchei, Stephen Karl, Randall Kosaki, David Pence, and Ross Robertson. We thank Sue Taei at Conservation International, Graham Wragg of the RV Bounty Bay, the Government of Kiribati, including Tukabu Teroroko and the Phoenix Island Protected Area who assisted with Kiribati collections. We also thank Robert Toonen, Serge Planes, Stephen Karl, John Randall, Joann Leong, Patrick Colin, Laura Colin, the Coral Reef Research Foundation, and members of the ToBo lab for their logistic support; we thank the Center for Genomics, Proteomics, and Bioinformatics at the University of Hawaii for their assistance with DNA sequencing. This is contribution no. 1492 from the Hawai’i Institute of Marine Biology and no. 8605 from the School of Ocean and Earth Science and Technology.


  1. Allen GR, Steene R (1987) Reef fishes of the Indian Ocean. T.F.H. Publications Inc., Neptune CityGoogle Scholar
  2. Allen GR, Steene R, Allen M (1998) A guide to angelfishes and butterflyfishes. Odyssey Publishing/Tropical Reef Research, Perth, AustraliaGoogle Scholar
  3. Avise JC (2004) Molecular markers, natural history, and evolution, 2nd edn. Sinauer Associates, Sunderland, MAGoogle Scholar
  4. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedCrossRefGoogle Scholar
  5. Bellwood DR, Van Hewerden L, Konow N (2004) Evolution and biogeography of marine angelfishes (Pisces: Pomacanthidae). Mol Phylogenet Evol 33:150–155CrossRefGoogle Scholar
  6. Bernardi G, Holbrook SJ, Schmitt RJ, Crane NL, DeMartini E (2002) Species boundaries, populations and colour morphs in the coral reef three-spot damselfish (Dascyllus trimaculatus) species complex. Proc R Soc Lond B Biol Sci 269:599–605CrossRefGoogle Scholar
  7. Bowen BW, Bass AL, Rocha LA, Grant WS, Robertson DR (2001) Phylogeography of the trumpetfishes (Aulostomus): Ring species complex on a global scale. Evolution 55:1029–1039PubMedCrossRefGoogle Scholar
  8. Bowen BW, Muss A, Rocha LA, Grant WS (2006) Shallow mtDNA coalescence in Atlantic pygmy angelfishes (genus Centropyge) indicates a recent invasion from the Indian Ocean. J Hered 97:1–12PubMedCrossRefGoogle Scholar
  9. Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr 39:12–30CrossRefGoogle Scholar
  10. Choat JH (2006) Phylogeography and reef fishes: bringing ecology back into the argument. J Biogeogr 33:967–968CrossRefGoogle Scholar
  11. Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol 7:1255–1256PubMedGoogle Scholar
  12. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, MAGoogle Scholar
  13. Craig MT, Graham RT, Torres RA, Hyde JR, Freitas MO, Ferreira BP, Hostim M, Gerhardinger LC, Andrade AB, Robertson DR (2009) How many species of goliath grouper are there? Cryptic genetic divergence in a threatened marine fish and the resurrection of a geopolitical species. Endanger Species Res 7:167–174Google Scholar
  14. de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886PubMedCrossRefGoogle Scholar
  15. Drew JA, Allen GR, Kaufman L, Barber PH (2008) Endemism and regional color and genetic differences in five putatively cosmopolitan reef fishes. Conserv Biol 22:965–975PubMedCrossRefGoogle Scholar
  16. Drew JA, Allen GR, Erdmann MV (2010) Congruence between mitochondrial genes and color morphs in a coral reef fish: population variability in the Indo-Pacific damselfish Chrysiptera rex (Snyder, 1909). Coral Reefs 29:439–444CrossRefGoogle Scholar
  17. Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2009) Geneious v4.8, Available from
  18. Excoffier R, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  19. Excoffier R, Laval LG, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  20. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  21. Gaither MR, Toonen RJ, Robertson DR, Planes S, Bowen BW (2010) Genetic evaluation of marine biogeographic barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus spp.). J Biogeogr 37:133–147CrossRefGoogle Scholar
  22. Garcia-Machado E, Chevalier Monteagudo PP, Solignac M (2004) Lack of mtDNA differentiation among hamlets (Hypoplectrus, Serranidae). Mar Biol 144:147–152CrossRefGoogle Scholar
  23. Gardner JPA (1997) Hybridization in the sea. Adv Mar Biol 31:1–78CrossRefGoogle Scholar
  24. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  25. Hobbs JPA, Frisch AJ, Allen GR, Van Herwerden L (2009) Marine hybrid hotspot at Indo-Pacific biogeographic border. Biol Lett 5:258–261PubMedGoogle Scholar
  26. Hobbs JPA, Jones GP, Munday PL (2010) Rarity and extinction risk in coral reef angelfishes on isolated islands: interrelationships among abundance, geographic range size and specialization. Coral Reefs 29:1–11CrossRefGoogle Scholar
  27. Holt BG, Côté IM, Emerson BC (2011) Searching for speciation genes: Molecular evidence for selection associated with colour morphotypes in the Caribbean reef fish genus Hypoplectrus. PloS ONE [doi: 10.1371/journal.pone.0020394.g001]
  28. Horne JB, van Herwerden L, Choat JH, Robertson DR (2008) High population connectivity across the Indo-Pacific: Congruent lack of phylogeographic structure in three reef fish congeners. Mol Phylogenet Evol 49:629–638PubMedCrossRefGoogle Scholar
  29. Hubbs CL (1955) Hybridization between fish species in nature. Syst Zool 4:1–20CrossRefGoogle Scholar
  30. Ivanova EV (2009) The global thermohaline circulation. Springer, New YorkCrossRefGoogle Scholar
  31. Karl SA, Toonen RJ, Grant WS, Bowen BW (2012) Common misconceptions in molecular ecology: Echos of the modern synthesis. Mol Ecol (in press)Google Scholar
  32. Klanten OS, Choat JH, van Hewerden L (2007) Extreme genetic diversity and temporal rather than spatial partitioning in a widely distributed coral reef fish. Mar Biol 150:659–670CrossRefGoogle Scholar
  33. Langham GM (2007) Specialized avian predators repeatedly attack novel color morphs of Heliconius butterflies. Evolution 58:2783–2787Google Scholar
  34. Leray M, Beldade R, Holbrook SJ, Schmitt RJ, Planes S, Bernardi G (2010) Allopatric divergence and speciation in coral reef fish: The Three-Spot Dascyllus, Dascyllus trimaculatus, species complex. Evolution 64:1218–1230PubMedGoogle Scholar
  35. Lessios HA (2008) The great American schism: Divergence of marine organisms after the rise of the Central American isthmus. Annual Reviews of Ecology Evolution and Systematics 39:63–91CrossRefGoogle Scholar
  36. Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  37. Lin H-C, Sánchez-Ortiz C, Hastings PA (2009) Colour variation is incongruent with mitochondrial lineages: cryptic speciation and subsequent diversification in a Gulf of California reef fish (Teleostei: Blennioidei). Mol Ecol 18:2476–2488PubMedCrossRefGoogle Scholar
  38. McCafferty S, Bermingham E, Quenouille B, Planes S, Hoelzer G, Asoh K (2002) Historical biogeography and molecular systematics of the Indo-Pacific genus Dascyllus (Teleostei: Pomacentridae). Mol Ecol 11:1377–1392PubMedCrossRefGoogle Scholar
  39. McCartney MA, Acevedo J, Heredia C, Rico C, Quenouille B, Bermingham E, McMillan WO (2003) Genetic mosaic in a marine species flock. Mol Ecol 12:2963–2973PubMedCrossRefGoogle Scholar
  40. McMillan WO, Palumbi SR (1995) Concordant evolutionary patterns among Indo-West Pacific butterflyfishes. Proc R Soc Lond B Biol Sci 260:229–236CrossRefGoogle Scholar
  41. McMillan WO, Weigt LA, Palumbi SR (1999) Color pattern evolution, assortative mating, and genetic differentiation in brightly colored butterflyfishes (Chaetodontidae). Evolution 53:247–260CrossRefGoogle Scholar
  42. Meeker ND, Hutchinson SA, Ho L, Trede NS (2007) Method for isolation of PCR-ready genomic DNA from zebrafish tissues. Biotechniques 43:610–614PubMedCrossRefGoogle Scholar
  43. Moyer JT (1990) Social and reproductive behavior of Chaetodontoplus mesoleucus (Pomacanthidae) at Bantayan Island, Philippines, with notes on pomacanthid relationships. Japan J Ichthyol 36:459–467Google Scholar
  44. Moyer JT, Nakazono A (1978) Population structure, reproductive behavior, and protogynous hermaphroditism in the angelfish Centropyge interruptus at Miyake-jima, Japan. Japan J Ichthyol 25:25–39Google Scholar
  45. Narum SR (2006) Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv Genet 7:783–787CrossRefGoogle Scholar
  46. Pianka ER (1978) Evolutionary ecology. Harper and Row, New York, USAGoogle Scholar
  47. Planes S, Doherty PJ (1997a) Genetic relationships of the colour morphs of Acanthochromis polyacanthus (Pomacentridae) on the northern Great Barrier Reef. Mar Biol 130:109–117CrossRefGoogle Scholar
  48. Planes S, Doherty PJ (1997b) Genetic and color interactions at a contact zone of Acanthochromis polyacanthus: A marine fish lacking pelagic larvae. Evolution 51:1232–1243CrossRefGoogle Scholar
  49. Planes S, Fauvelot C (2002) Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56:378–399PubMedGoogle Scholar
  50. Posada D (2003) Using Modeltest and PAUP* to select a model of nucleotide substitution. pp. 6.5.1–6.5.14. In: Baxevanis AD, Davison DB, Page RDM, Petsko GA, Stein LD, Stormo GD (eds) Current protocols in bioinformatics. John Wiley & Sons, IncGoogle Scholar
  51. Posada D (2008) jModelTest: Phylogenetic model averaging. Mol Biol Evol 25:253–1256CrossRefGoogle Scholar
  52. Puebla O, Bermingham E, Guichard F, Whiteman E (2007) Colour pattern as a single trait driving speciation in Hypoplectrus coral reef fishes? Proc R Soc Lond B Biol Sci 274:1265–1271CrossRefGoogle Scholar
  53. Puebla O, Bermingham E, Guichard F (2008) Population genetic analyses of Hypoplectrus coral reef fishes provide evidence that local processes are operating during the early stages of marine adaptive radiations. Mol Ecol 17:1405–1415PubMedCrossRefGoogle Scholar
  54. Pyle RL (1992) Rare and unusual marines: A hybrid angelfish Centropyge flavissimus x eibli. Freshw Mar Aquar 15(98–110):212Google Scholar
  55. Pyle RL (2003) A systematic treatment of the reef-fish family Pomacanthidae (Pisces: Perciformes). Ph.D. Dissertation, University of Hawai’i, Honolulu, p 422Google Scholar
  56. Pyle RL, Randall JE (1994) A review of hybridization in marine angelfishes (perciformes: Pomacanthidae). Environ Biol Fish 41:127–145Google Scholar
  57. Ramon ML, Lobel PS, Sorenson MD (2003) Lack of mitochondrial genetic structure in hamlets (Hypoplectrus spp.): recent speciation or ongoing hybridization? Mol Ecol 12:2975–2980PubMedCrossRefGoogle Scholar
  58. Randall JE (1998) Zoogeography of shore fishes of the Indo-Pacific region. Zool Stud 37:227–268Google Scholar
  59. Randall JE, Rocha LA (2009) Chaetodontoplus poliourus, a new angelfish (Percirformes: Pomacanthidae) from the tropical western Pacific. Raffles Bull Zool 57:511–520Google Scholar
  60. Reece JS, Bowen BW, Joshi K, Goz V, Larson L (2010) Phylogeography of two moray eels indicates high dispersal throughout the Indo-Pacific. J Hered 101:391–402PubMedCrossRefGoogle Scholar
  61. Rocha LA (2004) Mitochondrial DNA and color pattern variation in three western Atlantic Halichoeres (Labridae), with the revalidation of two species. Copeia 2004:770–782CrossRefGoogle Scholar
  62. Rocha LA, Bowen BW (2008) Speciation in coral reef fishes. J Fish Biol 72:1101–1121CrossRefGoogle Scholar
  63. Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc R Soc Lond B Biol Sci 272:573–579Google Scholar
  64. Rocha LA, Craig MT, Bowen BW (2007) Phylogeography and the conservation genetics of coral reef fishes. Coral Reefs 26:501–512CrossRefGoogle Scholar
  65. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  66. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  67. Schultz JK, Pyle RL, DeMartini E, Bowen BW (2007) Genetic connectivity among color morphs and Pacific archipelagos for the flame angelfish, Centropyge loriculus. Mar Biol 151:167–175CrossRefGoogle Scholar
  68. Seehausen O, Van Alphen JJM, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–1811CrossRefGoogle Scholar
  69. Seehausen O, Mayhew PJ, Van Alphen JJM (1999) Evolution of colour patterns in East African cichlid fish. J Evol Biol 12:514–534CrossRefGoogle Scholar
  70. Seutin G, White BN, Boag PT (1991) Preservation of avian and blood tissue samples for DNA analyses. Can J Zool 69:82–92CrossRefGoogle Scholar
  71. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57:573–583CrossRefGoogle Scholar
  72. Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169PubMedCrossRefGoogle Scholar
  73. Swofford DL (2000) PAUP*: Phylogenetic analysis by parsimony, version 4.0. Sinauer Associates. Sunderland, MAGoogle Scholar
  74. Takeshita GY (1976) An angel hybrid. Mar Aquarist 7:27–35Google Scholar
  75. Tavaré S (1984) Line-of-descent and genealogical processes, and their applications in population genetics models. Theor Popul Biol 26:119–164PubMedCrossRefGoogle Scholar
  76. Thresher RE, Brothers EB (1985) Reproductive ecology and biogeography of Indo-West Pacific angelfishes (Pisces: Pomacanthidae). Evolution 39:878–887CrossRefGoogle Scholar
  77. Yaakub SM, Bellwood DR, Van Herwerden L (2006) A rare hybridization event in two common Caribbean wrasses (genus Halichoeres; family Labridae). Coral Reefs 26:597–602CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Joseph D. DiBattista
    • 1
    Email author
  • Ellen Waldrop
    • 1
  • Brian W. Bowen
    • 1
  • Jennifer K. Schultz
    • 1
  • Michelle R. Gaither
    • 2
  • Richard L. Pyle
    • 3
  • Luiz A. Rocha
    • 2
  1. 1.Hawai’i Institute of Marine BiologyKane’oheUSA
  2. 2.Section of Ichthyology, California Academy of SciencesSan FranciscoUSA
  3. 3.Bernice P. Bishop MuseumHonoluluUSA

Personalised recommendations