Coral Reefs

, Volume 31, Issue 3, pp 741–752 | Cite as

Pulsed 86Sr-labeling and NanoSIMS imaging to study coral biomineralization at ultra-structural length scales

  • C. Brahmi
  • I. Domart-Coulon
  • L. Rougée
  • D. G. Pyle
  • J. Stolarski
  • J. J. Mahoney
  • R. H. Richmond
  • G. K. Ostrander
  • A. Meibom


A method to label marine biocarbonates is developed based on a concentration enrichment of a minor stable isotope of a trace element that is a natural component of seawater, resulting in the formation of biocarbonate with corresponding isotopic enrichments. This biocarbonate is subsequently imaged with a NanoSIMS ion microprobe to visualize the locations of the isotopic marker on sub-micrometric length scales, permitting resolution of all ultra-structural details. In this study, a scleractinian coral, Pocillopora damicornis, was labeled 3 times with 86Sr-enhanced seawater for a period of 48 h with 5 days under normal seawater conditions separating each labeling event. Two non-specific cellular stress biomarkers, glutathione-S-transferase activity and porphyrin concentration plus carbonic anhydrase, an enzymatic marker involved in the physiology of carbonate biomineralization, as well as unchanged levels of zooxanthellae photosynthesis efficiency indicate that coral physiological processes are not affected by the 86Sr-enhancement. NanoSIMS images of the 86Sr/44Ca ratio in skeleton formed during the experiment allow for a determination of the average extension rate of the two major ultra-structural components of the coral skeleton: Rapid Accretion Deposits are found to form on average about 4.5 times faster than Thickening Deposits. The method opens up new horizons in the study of biocarbonate formation because it holds the potential to observe growth of calcareous structures such as skeletons, shells, tests, spines formed by a wide range of organisms under essentially unperturbed physiological conditions.


Biomineralization Scleractinia Skeleton 86Sr-labeling Growth dynamics Ecotoxicology 



Collier, B. Gaume, S. Shafir, C. Kopp, J. Martinez and A. Thomen are thanked for fruitful discussions. We gratefully acknowledge support from the Monahan Foundation and the Franco-American commission. This work was supported in part by the European Research Council Advanced Grant 246749 (BIOCARB), the MNHN program ATM “Biomineralizations”, grants from the CNRS (“InterVie” and “PIR Interface”) and a grant from the Polish Ministry of Science and higher education (project N307-015733). The manuscript has benefited substantially from constructive reviews by Dr. Nicky Allison, Dr. Alex Gagnon and an anonymous reviewer.

Supplementary material

338_2012_890_MOESM1_ESM.doc (79 kb)
Supplementary material 1 (DOC 79 kb)
338_2012_890_MOESM2_ESM.doc (44 kb)
Supplementary material 2 (DOC 44 kb)


  1. Adkins JF, Boyle EA, Curry WB, Lutringer L (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67:1129–1143CrossRefGoogle Scholar
  2. Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426Google Scholar
  3. Allison N, Finch A, EIME (2010) δ11B, Sr, Mg and B in a modern Porites coral: The relationship between calcification site pH and skeleton chemistry. Geochim Cosmochim Acta 74:1790–1800CrossRefGoogle Scholar
  4. Allison N, Cohen I, Finch AA, Erez J, EMIF (2011) Controls on Sr/Ca and Mg/Ca in scleractinian corals: the effects of Ca-ATPase and transcellular Ca channels on skeletal chemistry. Geochim Cosmochim Acta 75:6350–6360CrossRefGoogle Scholar
  5. Barnes DJ (1972) The structure and formation of growth-ridges in scleractinian coral skeletons. Proc R Soc Lond B 182:331–350CrossRefGoogle Scholar
  6. Bernhard JM, Blanks JK, Hintz CJ, Chandler GT (2004) Use of the fluorescent calcite marker calcein to label foraminiferal tests. J Foraminifer Res 34:96–101CrossRefGoogle Scholar
  7. Bielmyer GK, Grosell M, Bhagooli R, Baker AC, Langdon C, Gillette P, Capo TR (2012) Differential effects of copper on three species of scleractinian corals and their algal symbionts (Symbiodinium spp.). Aquat Toxicol 97:125–133Google Scholar
  8. Blamart D, Rollion-Bard C, Meibom A, Cuif J-P, Juillet-Leclerc A, Dauphin Y (2007) Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: Implications for biomineralization and paleo-pH. Geochem Geophys Geosyst 8 Q12001 doi: 10.1029/2007GC001686
  9. Brahmi C, Meibom A, Smith DC, Stolarski J, Auzoux-Bordenave S, Nouet J, Doumenc D, Djediat C, Domart-Coulon I (2010) Skeleton growth, ultrastructure and composition of the azooxanthellate Balanophyllia regia. Coral Reefs 29:175–189CrossRefGoogle Scholar
  10. Budd AF, Stolarski J (2011) Corallite wall and septal microstructure in scleractinian reef corals: Comparison of molecular clades within the family Faviidae. J Morphol 272:66–88PubMedCrossRefGoogle Scholar
  11. Bumguardner BW, King TL (1996) Toxicity of oxytetracycline and calcein to juvenile striped bass. Trans Am Fish Soc 125:143–145CrossRefGoogle Scholar
  12. Chow TJ, Thompson TG (1955) Flame photometric determination of strontium in seawater. Anal Chem 27:18–21CrossRefGoogle Scholar
  13. Clausen CD, Roth AA (1975) Estimation of coral growth rates from laboratory 45Ca incorporation rates. Mar Biol 33:85–91CrossRefGoogle Scholar
  14. Clode PL, Marshall AT (2002) Low temperature FESEM of the calcifying interface of a scleractinian coral. Tissue Cell 34:187–189PubMedCrossRefGoogle Scholar
  15. de Villiers S (1999) Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans. Earth Planet Sci Lett 171:623–634CrossRefGoogle Scholar
  16. Dissard D, Nehrke G, Reichart GJ, Nouet J, Bijma J (2009) Effect of the fluorescent indicator calcein on Mg and Sr incorporation into foraminiferal calcite. Geochem Geophys Geosyst 10 Q11001 doi: 10.1029/2009GC002417
  17. Dodge RE, Wyers SC, Frith HR, Knap AH, Smith SR, Cook CB, Sleeter TD (1984) Coral calcification rates by the buoyant weight technique: Effects of alizarin staining. J Exp Mar Biol Ecol 75:217–232CrossRefGoogle Scholar
  18. Downs CA, Richmond RH, Mendiola WC, Rougée L, Ostrander GK (2006) Cellular physiological effects of the MV Kyowa Violet fuel-oil spill on the hard coral Porites lobata. Environ Toxicol Chem 25:3171–3180PubMedCrossRefGoogle Scholar
  19. Downs CA, Kramarsky-Winter E, Woodley CM, Downs A, Winters G, Loya Y, Ostrander GK (2009) Cellular pathology and histopathology of hypo-salinity exposure on the coral Stylophora pistillata. Sci Total Environ 407:4838–4851PubMedCrossRefGoogle Scholar
  20. Epstein S, Buscsbaum R, Lowenstam HA, Urey H (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326CrossRefGoogle Scholar
  21. Ferrier-Pagès C, Boisson F, Allemand D, Tambutté E (2002) Kinetics of strontium uptake in the scleractinian coral Stylophora pistillata. Mar Ecol Prog Ser 245:93–100CrossRefGoogle Scholar
  22. Finch A, Allison N (2002) Strontium in coral aragonite: 1. Characterization of Sr coordination by extended absorption X-ray fine structure. Geochim Cosmochim Acta 67:1189–1194Google Scholar
  23. Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 158:3445–3457Google Scholar
  24. Gaume B, Fouchereau-Peron M, Badou A, Hellouet M-N, Huchette S, Auzoux-Bordenave S (2011) Biomineralization markers during early shell formation in the European abalone Haliotis tuberculata. Mar Biol 158:341–352CrossRefGoogle Scholar
  25. Gilbert AL, Guzman HM (2001) Bioindication potential of carbonic anhydrase activity in anemones and corals. Mar Pollut Bull 42:742–744PubMedCrossRefGoogle Scholar
  26. Gladfelter EH (1983) Skeletal development in Acropora cervicornis: II Diel patterns of calcium carbonate accretion. Coral Reefs 2:91–100CrossRefGoogle Scholar
  27. Gladfelter EH (2007) Skeletal development in Acropora palmata (Lamarck 1816): a scanning electron microscope (SEM) comparison demonstrating similar mechanisms of skeletal extension in axial versus encrusting growth. Coral Reefs 26:883–892CrossRefGoogle Scholar
  28. Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull 116:59–75CrossRefGoogle Scholar
  29. Guzman HM, Cortes J (1989) Growth rates of eight species of scleractinian corals in the eastern Pacific (Costa Rica). Bull Mar Sci 44:1186–1194Google Scholar
  30. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139PubMedGoogle Scholar
  31. Hoogenboom MO, Anthony KR, Connolly SR (2006) Energetic cost of photoinhinition in corals. Mar Ecol Prog Ser 313:1–12CrossRefGoogle Scholar
  32. Houlbrèque F, Meibom A, Cuif J-P, Stolarski J, Marrocchi Y, Ferrier-Pagès C, Domart-Coulon I, Dunbar RB (2009) Strontium-86 labeling experiments show spatially heterogeneous skeletal formation in the scleractinian coral Porites porites. Geophys Res Lett 36 doi: 10.1029/2008GL036782
  33. Ip YK, Krishnanevi P (1991) Incorporation of strontium (90Sr2+) into the skeleton of the hermatypic coral Galaxea fascicularis. J Exp Zool 258:273–276CrossRefGoogle Scholar
  34. Isa Y, Ikehara N, Yamazato K (1980) Evidence for the occurrence of Ca2+-dependent adenosine triphosphatase in a hermatypic coral Acropora hebes (DANA). Sesoko Mar Sci Lab Tech Rep 7:19–25Google Scholar
  35. Janiszewska K, Stolarski J, Benzerara K, Meibom A, Mazur M, Kitahara M, Cairns S (2011) A unique skeletal microstructure of the deep-sea micrabaciid scleractinian corals. J Morphol 272:191–203PubMedCrossRefGoogle Scholar
  36. Johnston IS (1980) The ultrastructure of skeletogenesis in hermatypic corals. Int Rev Cytol 67:171–214CrossRefGoogle Scholar
  37. Jones RJ, Hoegh-Guldberg O (1999) Effects of cyanide on coral photosynthesis: Implication for identifying the cause of coral bleaching and for assessing the environmental effects of cyanide fishing. Mar Ecol Prog Ser 177:83–91CrossRefGoogle Scholar
  38. Krief S, Hendy EJ, Finea M, Yamd R, Meibom A, Fosterc GL, Shemesh A (2010) Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim Cosmochim Acta 74:4988–5001CrossRefGoogle Scholar
  39. Le Tissier MD’AA (1988) The growth and formation of branch tips of Pocillopora damicornis. J Exp Mar Biol Ecol 124:115–131Google Scholar
  40. Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld AM, Kampf P, Distel D, Luyten Y, Bonventre J, Hentschel D, Park KM, Ito S, Schwartz M, Benichou G, Slodzian G (2006) High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 5 doi: 10.1186/jbiol42
  41. Marshall AT, Clode PL (2002) Effect on increased calcium concentration in seawater on calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. J Exp Biol 205:2107–2113PubMedGoogle Scholar
  42. Marshall AT, Wright A (1998) Coral calcification: autoradiography of a scleractinian coral Galaxea fascicularis after incubation in 45Ca and 14C. Coral Reefs 17:37–47CrossRefGoogle Scholar
  43. Meibom A, Cuif J-P, Mostefaoui S, Dauphin Y, Houlbrèque F, Meibom K, Dunbar R (2008) Compositional variations at ultra-structure length scales in coral skeleton. Geochim Cosmochim Acta 72:1555–1569CrossRefGoogle Scholar
  44. Moya A, Tambutté S, Bertucci A, Tambutté E, Lotto S, Vullo D, Supuran C, Allemand D, Zoccola D (2008) Carbonic anhydrase in the scleractinian coral Stylophora pistillata: characterization, localization and role in biomineralization. J Biol Chem 282:25475–25484CrossRefGoogle Scholar
  45. Nothdurft LD, Webb G (2007) Microstructure of common reef-building coral genera Acropora, Pocillopora, Goniastrea and Porites: Constraints on spatial resolution in geochemical sampling. Facies 53:1–26CrossRefGoogle Scholar
  46. Rollion-Bard C, Blamart D, Cuif J-P, Juillet-Leclerc A (2003) Microanalysis of C and O isotopes of azooxanthallate and zooxanthellate corals by ion microprobe. Coral Reefs 22:405–415CrossRefGoogle Scholar
  47. Rougée L, Downs CA, Richmond RH, Ostrander GK (2006) Alteration of normal cellular profiles in the scleractinian coral Pocillopora damicornis following laboratory exposure to fuel oil. Environ Toxicol Chem 25:3181–3187PubMedCrossRefGoogle Scholar
  48. Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921PubMedCrossRefGoogle Scholar
  49. Sinclair D (2005) Correlated trace element “vital effects” in tropical corals: A new geochemical tool for probing biomineralization. Geochim Cosmochim Acta 69:3265–3284CrossRefGoogle Scholar
  50. Smith SV, Buddemeier RW, Redalje RC, Houck JE (1979) Strontium-calcium thermometry in coral skeletons. Science 204:404–407PubMedCrossRefGoogle Scholar
  51. Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: A biocalcification proxy. Acta Palaeontol Pol 48:497–530Google Scholar
  52. Swart PK, Elderfield H, Greaves MJ (2002) A high-resolution calibration of Sr/Ca thermometry using the Caribbean coral Montastraea annularis. Geochem Geophys Geosyst 3 8402 doi: 10.1029/2002GC000306
  53. Tambutté E, Allemand D, Mueller E, Jaubert J (1996) A compartmental approach to the mechanism of calcification in hermatypic corals. J Exp Biol 199:1029–1041Google Scholar
  54. Tambutté E, Allemand D, Zoccola D, Meibom A, Lotto S (2007a) Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs 26:517–529CrossRefGoogle Scholar
  55. Tambutté S, Tambutté E, Zoccola D, Caminiti N, Lotto S, Moya A, Allemand D, Adkins JF (2007b) Characterization and role of carbonic anhydrase in the calcification process of the azoxanthellate coral Tubastrea aurea. Mar Biol 151:71–83CrossRefGoogle Scholar
  56. Thébault J, Chauvaud L, Clavier J, Fichez R, Morize E (2006) Evidence of a 2-day periodicity of striae formation in the tropical scallop Comptopallium radula using calcein marking. Mar Biol 149:257–267CrossRefGoogle Scholar
  57. Thunell S (2000) Porphyrins, porphyrin metabolism and porphyries. I. Update. Scand J Clin Lab Investig 60:509–540CrossRefGoogle Scholar
  58. Vitale AM, Monserrat JM, Castilho P, Rodriguez EM (1999) Inhibitory effects of cadmium on carbonic anhydrase activity and ionic regulation of the estuarine crab Chasmagnathus granulata (Decapoda, Grapsidae). Comp Biochem Physiol C 122:121–129PubMedGoogle Scholar
  59. Wilbur K, Jodrey L (1956) Studies on shell formation V. The inhibition of shell formation by carbonic anhydrase inhibitors. Biol Bull 108:359–365CrossRefGoogle Scholar
  60. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292:686–693PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • C. Brahmi
    • 1
    • 2
  • I. Domart-Coulon
    • 2
  • L. Rougée
    • 3
  • D. G. Pyle
    • 4
  • J. Stolarski
    • 5
  • J. J. Mahoney
    • 4
  • R. H. Richmond
    • 3
  • G. K. Ostrander
    • 6
  • A. Meibom
    • 1
    • 7
  1. 1.Laboratoire de Minéralogie et Cosmochimie du Muséum UMR7202Muséum National d’Histoire NaturelleParisFrance
  2. 2.Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques UMR7208Muséum National d’Histoire NaturelleParisFrance
  3. 3.Pacific Biosciences Research CenterUniversity of Hawaii at Mano’a—Kewalo Marine LaboratoryHonoluluUSA
  4. 4.Department of Geology and GeophysicsUniversity of Hawaii at Mano’aHonoluluUSA
  5. 5.Institute of PaleobiologyPolish Academy of SciencesWarszawaPoland
  6. 6.Pacific Biosciences Research CenterUniversity of Hawaii at Mano’aHonoluluUSA
  7. 7.Laboratory for Biological GeochemistryEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations