Coral Reefs

, Volume 31, Issue 3, pp 765–777 | Cite as

Contrasting clonal structure among Pocillopora (Scleractinia) communities at two environmentally distinct sites in the Gulf of California

  • J. H. Pinzón
  • H. Reyes-Bonilla
  • I. B. Baums
  • T. C. LaJeunesse


The contributions of sexual versus asexual reproduction are thought to play an important role in the abundance and ecological success of corals, especially in marginal habitats. Pocillopora corals are distributed throughout the Indo-Pacific and dominate shallow hard-bottom communities in the eastern Pacific where broad seasonal fluctuations in temperature and water turbidity create suboptimal conditions for reef community development. Previous work had revealed three genetic clades in the eastern Pacific that show little correspondence with colony morphology; the broad distribution of type 1 extends into the subtropical southern Gulf of California. Here we examine genetic and clonal structure of two type 1 communities separated by 10 km with microsatellite data. Samples were collected randomly in six 10 m radius circular plots (20 colonies per plot, 3 plots per site). Sites differed in their relative clonality because clonemates (ramets) from a single clone (genet) dominated a large portion (90.9 m long) of the protected leeward side of Gaviota Island (Number of genets/Number of samples = 0.35; observed Genotypic diversity/expected Genotypic diversity = 0.087), while an exposed community at the entrance to La Paz Bay, Punta Galeras, exhibited high genotypic diversity (N g /N = 0.85; G o /G e  = 0.714). Gene flow was unrestricted between sites indicating these communities comprised a single population. The relative proportion of asexual colonies found between community aggregations of Pocillopora in the Gulf of California differed significantly and suggests factors at local, not regional, scales affect these patterns. The possibility that heterogeneity in clonal structure is common throughout the eastern Pacific and across the west Indo-Pacific requires further study. Finally, since morphological variation in Pocillopora has been underappreciated and is in need of taxonomic revision, the use of a consistent field-sampling protocol and high-resolution makers will advance ecological research and aid in the conservation of these corals.


Clonal reproduction Eastern Tropical Pacific Microsatellites Pocillopora Population structure 



We thank Tye Pettay and Mark Warner for assistance in the field and the Penn State Genomics Core Facility—University Park, PA. Comments of three anonymous reviewers help in the final version of the manuscript. This research was funded in part by The Pennsylvania State University, the National Science Foundation (IOB 544854 and OCE 09287664), and an Alfred P. Sloan Scholarship to JP.

Supplementary material

338_2012_887_MOESM1_ESM.eps (591 kb)
Figure S1. Estimated number of genetically homogenous clusters between populations at ISLG and PGAL with duplicated genotypes removed. Analysis using Structure (Pritchard et al. 2000) resolved the optimal number of clusters (i.e., populations) at one indicating no population subdivision. The plot figure shown for a given K is based on the composite probabilities of 5 independent statistical runs at that K and depicts both sites combine to form a single genetically homogenous population. Supplementary material 1 (EPS 590 kb)


  1. Adjeroud M, Tsuchiya M (1999) Genetic variation and clonal structure in the scleractinian coral Pocillopora damicornis in the Ryukyu Archipelago, southern Japan. Mar Biol 134:753–760CrossRefGoogle Scholar
  2. Arnaud-Haond S, Belkhir K (2007) GENCLONE: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15–17CrossRefGoogle Scholar
  3. Arnaud-Haond S, Alberto F, Teixeira S, Procaccini G, Serrao E, Duarte C (2005) Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost efficiency in selecting markers. J Hered 96:434PubMedCrossRefGoogle Scholar
  4. Arnaud-Haond S, Duarte C, Alberto F, Serrao E (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139PubMedCrossRefGoogle Scholar
  5. Ayre DJ (1984) The effects of sexual and asexual reproduction on geographic variation in the sea anemone Actinia tenebrosa. Oecologia 62:222–229CrossRefGoogle Scholar
  6. Ayre DJ, Miller KJ (2004) Where do clonal coral larvae go? Adult genotypic diversity conflicts with reproductive effort in the brooding coral Pocillopora damicornis. Mar Ecol Prog Ser 277:95–105CrossRefGoogle Scholar
  7. Ayre DJ, Hughes TP, Standish RJ (1997) Genetic differentiation, reproductive mode, and gene flow in the brooding coral Pocillopora damicornis along the Great Barrier Reef, Australia. Mar Ecol Prog Ser 159:175–187CrossRefGoogle Scholar
  8. Baird A, Guest J, Willis B (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annual Review of Ecology, Evolution and Systematics 40:552–571CrossRefGoogle Scholar
  9. Baums IB (2008) A restoration genetics guide for coral reef conservation. Mol Ecol 17:2796–2811PubMedCrossRefGoogle Scholar
  10. Baums IB, Miller MW, Hellberg ME (2006) Geographic variation in clonal structure in a reef-building Caribbean coral, Acropora palmata. Ecol Monogr 76:503–519CrossRefGoogle Scholar
  11. Benzie JAH, Haskell A, Lehman H (1995) Variation in the genetic composition of coral (Pocillopora damicornis and Acropora palifera) populations from different reef habitats. Mar Biol 121:731–739CrossRefGoogle Scholar
  12. Birkeland C (1977) The importance of rate biomass accumulation on successional stages of benthic communities survival of coral recruits. Proc 3rd Int Coral Reef Symp 1:15–21Google Scholar
  13. Brown J (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279CrossRefGoogle Scholar
  14. Budd A, Romano S, Smith N, Barbeitos M (2010) Rethinking the phylogeny of scleractinian corals: A review of morphological and molecular data. Intgr Comp Biol 50:411–427CrossRefGoogle Scholar
  15. Chávez-Romo HE, Reyes-Bonilla H (2007) Reproducción sexual del coral Pocillopora damicornis al sur del Golfo de California, México. Cienc Mar 33:495–501Google Scholar
  16. Chávez-Romo HE, Correa-Sandoval F, Paz-García D, Reyes-Bonilla H, López-Pérez RA, Medina-Rosas P, Hernández-Cortés MP (2009) Genetic structure of the scleractinian coral, Pocillopora damicornis, from the Mexican Pacific. Proc 11th Int Coral Reef Symp 1:429–433Google Scholar
  17. Combosch D, Vollmer S (2011) Population genetics of an ecosystem-defining reef coral Pocillopora damicornis in the Tropical Eastern Pacific. PLoS ONE 6(8):e21200PubMedCrossRefGoogle Scholar
  18. Cortes J (1997) Biology and geology of eastern Pacific coral reefs. Coral Reefs 16:S39–S46CrossRefGoogle Scholar
  19. Crow J (1992) An advantage of sexual reproduction in a rapidly changing environment. J Hered 83:169–173PubMedGoogle Scholar
  20. David P, Pujol B, Viard F, Castella V, Goudet J (2007) Reliable selfing rate estimates from imperfect population genetic data. Mol Ecol 16:2474–2487PubMedCrossRefGoogle Scholar
  21. Delmotte F, Leterme N, Gauthier JP, Rispe C, Simon JC (2002) Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Mol Ecol 711–723Google Scholar
  22. Dorken ME, Eckert C (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339–350CrossRefGoogle Scholar
  23. Drummond A, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones S, Thiere T, Wilson A (2009) Geneious v4.8, Available from
  24. Earl DA (2009) Structure Harvester v0.3, website:
  25. Eckert C (2002) The loss of sex in clonal plants. Evol Ecol 15:501–520CrossRefGoogle Scholar
  26. Eckert C, Samis K, Lougheed S (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188PubMedCrossRefGoogle Scholar
  27. Edinger E, Risk MJ (1995) Preferential survivorship of brooding corals in a regional extinction. Paleobiology 21(2):200–219Google Scholar
  28. Flot J, Magalon H, Cruaud C, Couloux A, Tillier S (2008) Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology. Comptes Rendus Biologies 331:239–247PubMedCrossRefGoogle Scholar
  29. Flot J-F, Couloux A, Tillier S (2010) Haplowebs as a graphical tool for delimiting species: a revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol Biol 10:372PubMedCrossRefGoogle Scholar
  30. Gaston KJ (2009) Geographic range limits: achieving synthesis. Proc R Soc B 276:1395–1406PubMedCrossRefGoogle Scholar
  31. Glynn PW (1976) Some physical and biological determinant of coral community structure in the Eastern Pacific. Ecol Monogr 46:431–456CrossRefGoogle Scholar
  32. Glynn PW, Gassman N, Eakin C, Cortes J, Smith DB, Guzman H (1991) Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador). Mar Biol 109:355–369CrossRefGoogle Scholar
  33. Halkett F, Simon J, Balloux F (2005) Tackling the population genetics of clonal and partially clonal organisms. Trends Ecol Evol 20:194–201PubMedCrossRefGoogle Scholar
  34. Harrison PL (2011) Sexual reproduction of scleractinian corals. In: Dubinsky Z, Stambler N (eds) Coral reefs: An ecosystem in transition. Springer, London, pp 59–85CrossRefGoogle Scholar
  35. Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Coral reefs Ecosystems of the world 25. Elsevier, Amsterdam, pp 133–207Google Scholar
  36. Hernández L, Balart EF, Reyes-Bonilla H (2009a) Checklist of reef decapod crustaceans (Crustacea: Decapoda) in the southern Gulf of California, México. Zootaxa 2119:39–50Google Scholar
  37. Hernández L, Balart EF, Reyes-Bonilla H (2009b) Effect of hurricane John (2006) on the invertebrates associated with corals in Bahía de La Paz, Gulf of California. Proc 11th Int Coral Reef Symp: 301–304Google Scholar
  38. Hernández L, Reyes-Bonilla H, Balart EF (2010) Efecto del blanqueamiento del coral por baja temperatura en los crustáceos decápodos asociados a arrecifes del suroeste del golfo de California. Revista Mexicana de Biodiversidad: 1–7Google Scholar
  39. Highsmith R (1982) Reproduction by fragmentation in corals. Mar Ecol Prog Ser 7:207–226CrossRefGoogle Scholar
  40. Hoegh-Guldberg O, Mumby PJ, Hooten H, Steneck, Greenfield P, Gomez E, C. Harvell CD, Sale P, Edwards A, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury B, Dubi A, Hatziolos M (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742Google Scholar
  41. Honnay O, Bossuyt B (2005) Prolonged clonal growth: escape route or route to extinction? Oikos 108:427–432CrossRefGoogle Scholar
  42. Hurlbert S (1971) Nonconcept of species diversity—critique and alternative parameters. Ecology 52:577–586CrossRefGoogle Scholar
  43. Jackson JBC (1986) Modes of dispersal of clonal benthic invertebrates: consequences for species’ distributions and genetic structure of local populations. Bull Mar Sci 39:588–606Google Scholar
  44. Jakobsson M, Rosenberg N (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806PubMedCrossRefGoogle Scholar
  45. Jiménez-Illescaz AR (1996) Análisis de procesos barotrópicos y baroclínicos en la Bahía de La Paz. ICML-UNAM, B. C. S. 168Google Scholar
  46. Kapralov M (2004) Genotypic variation in populations of the clonal plant Saxifraga cernua in the Central and Peripheral Regions of the species range. Russ J Ecol 35:413–416CrossRefGoogle Scholar
  47. Kerr AM, Baird AH, Hughes TP (2011) Correlated evolution of sex and reproductive mode in corals (Anthozoa: Scleractinia). Proc R Soc B 278:75–81PubMedCrossRefGoogle Scholar
  48. Knowlton N (2001) The future of coral reefs. Proc Natl Acad Sci USA 96:5419–5425CrossRefGoogle Scholar
  49. LaJeunesse TC, Low WKW, von Woesik R, Hoegh-Guldbery O, Schmidt GW, Fitt WR (2003) Low symbiont diversity in southern Great Barrier Reef corals relative to those in the Caribbean. Limnol Oceangr 48:2046–2054CrossRefGoogle Scholar
  50. Magalon H, Adjeroud M, Vauille M (2005) Patterns of genetic variation do not correlate with geographical distance in the reef-building coral Pocillopora meandrina in the south Pacific. Mol Ecol 14:1861–1868PubMedCrossRefGoogle Scholar
  51. Marsh L (1993) The occurrence and growth of Acropora in extra-tropical waters off Perth, Western Australia. Proc 7th Int Coral Reef Symp 2:1233–1238Google Scholar
  52. Miller KJ, Ayre DJ (2004) The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis. Heredity 92:557–568PubMedCrossRefGoogle Scholar
  53. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, Mcardle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JB (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958PubMedCrossRefGoogle Scholar
  54. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  55. Pinzón JH (2011) Phylogenetics, population genetics and ecology to understand the evolution of coral-algal mutualisms. Ph.D dissertation, The Pennsylvania State University, p 154Google Scholar
  56. Pinzón JH, LaJeunesse TC (2011) Species delimitation of reef building corals using nucleotide sequence phylogenies, population genetics, and symbiosis ecology. Mol Ecol 20:311–325PubMedCrossRefGoogle Scholar
  57. Precht WF, Aronson RB (2004) Climate flickers and range shifts of reef corals. Front Ecol Environ 2:307–314CrossRefGoogle Scholar
  58. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  59. Raymond M, Rousset F (1995) GENEPOP (version1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  60. Reyes-Bonilla H (1992) New records for hermatypic corals(Anthozoa: Scleractinia) in the Gulf of California, Mexico, with an historical and biogeographical discussion. J Nat Hist 26:1163–1175CrossRefGoogle Scholar
  61. Reyes-Bonilla H (1993) Estructura de la comunidad, influencia de la depredación y biología poblacional de corales hermatípicos en el arrecife de Cabo Pulmo, B.C.S. MSc Thesis, Centro de Investigación Científica y de Educación Superior de Ensenada, Departamento de Ecología, p 169Google Scholar
  62. Richmond R (1985) Variations in the population biology of Pocillopora damicornis across the Pacific. Proc 5th Int Coral Reef Symp 1:101–107Google Scholar
  63. Richmond R (1987a) Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar Biol 93:527–533CrossRefGoogle Scholar
  64. Richmond RH (1987b) Energetic relationships and biogeographical differences among fecundity, growth and reproduction in the reef coral Pocillopora damicornis. Bull Mar Sci 41:594–604Google Scholar
  65. Ridgway T, Hoegh-Guldberg O, Ayre DJ (2001) Panmixia in Pocillopora verrucosa from South Africa. Mar Biol 139:175CrossRefGoogle Scholar
  66. Rosenberg N (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  67. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resources 8:103–106CrossRefGoogle Scholar
  68. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90CrossRefGoogle Scholar
  69. Sherman CDH, Ayre DJ, Miller KJ (2006) Asexual reproduction does not produce clonal populations of the brooding coral Pocillopora damicornis on the Great Barrier Reef, Australia. Coral Reefs 25:7–18CrossRefGoogle Scholar
  70. Smouse P, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573PubMedCrossRefGoogle Scholar
  71. Souter P (2010) Hidden genetic diversity in a key model species of coral. Mar Biol 157:875–885CrossRefGoogle Scholar
  72. Starger CJ, Yeoh SSR, Dai C-F, Baker AC, DeSalle R (2007) Ten polymorphic STR loci in the cosmopolitan reef coral, Pocillopora damicornis. Mol Ecol Resourc 8:619–621CrossRefGoogle Scholar
  73. Starger CJ, Barber PH, Ambariyanto, Baker AC (2010) The recovery of coral genetic diversity in the Sunda Strait following the 1883 eruption of Krakatau. Coral Reefs 29:547–565Google Scholar
  74. Stoddart JA (1983) Asexual production of planulae in the coral Pocillopora damicornis. Mar Biol 76:279–284CrossRefGoogle Scholar
  75. Stoddart JA (1984a) Biochemical genetics of Pocillopora damicornis in Kaneobe Bay, Oahu, Hawaii. Hawaii Inst Mar Biol, Tech Report 37:133–150Google Scholar
  76. Stoddart JA (1984b) Genetical structure within populations of the coral Pocillopora damicornis. Mar Biol 81:19–30CrossRefGoogle Scholar
  77. Stoddart JA (1984c) Genetic differentiation amongst populations of the coral Pocillopora damicornis off Southwestern Australia. Coral Reefs 3:149–156CrossRefGoogle Scholar
  78. Tatarenkov A, Bergstrom L, Jonsson R, Serrão E, Kautsky L, Johannesson K (2005) Intriguing asexual life in marginal populations of the brown seaweed Fucus vesiculosus. Mol Ecol 14:647–651PubMedCrossRefGoogle Scholar
  79. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  80. Vargas-Angel B, Thomas JD, Hoke SM (2003) High-latitude Acropora cervicornis thickets off Fort Lauderdale, Florida, USA. Coral Reefs 22:465–473CrossRefGoogle Scholar
  81. Whitaker K (2006) Genetic evidence for mixed modes of reproduction in the coral Pocillopora damicornis and its effect on population structure. Mar Ecol Prog Ser 306:115–124CrossRefGoogle Scholar
  82. Widen B, Cronberg N, Widen M (1994) Genotypic diversity, molecular markers and spatial distribution of genets in clonal plants, a literature review. Folio Geobot Phytotax 29:245–263CrossRefGoogle Scholar
  83. Williams G (1975) Sex and evolution. Princetown University Press, Princetown, NJGoogle Scholar
  84. Yamano H, Sugihara K, Nomura K (2011) Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys Res Lett 38: L04601, p 6. doi: 10.1029/2010GL046474
  85. Yeoh S-R, Dai C-F (2010) The production of sexual and asexual larvae within single broods of the scleractinan coral, Pocillopora damicornis. Mar Biol 157:351–359CrossRefGoogle Scholar
  86. Zaytsev O, Rabinovich AB, Thomson RE, Silverberg N (2010) Intense diurnal surface currents in the Bay of La Paz, Mexico. Cont Shelf Res 608–619Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • J. H. Pinzón
    • 1
    • 3
  • H. Reyes-Bonilla
    • 2
  • I. B. Baums
    • 1
  • T. C. LaJeunesse
    • 1
  1. 1.Department of BiologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Departamento de Biología MarinaUniversidad Autonoma de Baja California SurLa PazMexico
  3. 3.Department of BiologyThe University of Texas ArlingtonArlingtonUSA

Personalised recommendations