Coral Reefs

, Volume 31, Issue 2, pp 309–319 | Cite as

Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years

  • K. J. MeissnerEmail author
  • T. Lippmann
  • A. Sen Gupta


One-third of the world’s coral reefs have disappeared over the last 30 years, and a further third is under threat today from various stress factors. The main global stress factors on coral reefs have been identified as changes in sea surface temperature (SST) and changes in surface seawater aragonite saturation (Ωarag). Here, we use a climate model of intermediate complexity, which includes an ocean general circulation model and a fully coupled carbon cycle, in conjunction with present-day observations of inter-annual SST variability to investigate three IPCC representative concentration pathways (RCP 3PD, RCP 4.5, and RCP 8.5), and their impact on the environmental stressors of coral reefs related to open ocean SST and open ocean Ωarag over the next 400 years. Our simulations show that for the RCP 4.5 and 8.5 scenarios, the threshold of 3.3 for zonal and annual mean Ωarag would be crossed in the first half of this century. By year 2030, 66–85% of the reef locations considered in this study would experience severe bleaching events at least once every 10 years. Regardless of the concentration pathway, virtually every reef considered in this study (>97%) would experience severe thermal stress by year 2050. In all our simulations, changes in surface seawater aragonite saturation lead changes in temperatures.


Climate models IPCC representative concentration pathways Aragonite saturation Sea surface temperature Coral reefs 



We would like to thank Jack Silverman, as well as two extremely helpful anonymous reviewers who helped us to improve an earlier version of this manuscript. We are also grateful for research support under the Australian Research Council Future Fellowship Grant Program.


  1. Andersson AJ, Mackenzie FT, Bates NR (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar Ecol Prog Ser 373:265–273CrossRefGoogle Scholar
  2. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446PubMedCrossRefGoogle Scholar
  3. Anthony KRN, Maynard JA, Diaz-Pulido G, Mumby PJ, Marshall PA, Cao L, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Global Change Biol 17:1798–1808CrossRefGoogle Scholar
  4. Archer D (1996) A data-driven model of the global calcite lysocline. Global Biogeochem Cycles 10:511–526CrossRefGoogle Scholar
  5. Atkinson MJ, Cuet P (2008) Possible effects of ocean acidification on coral reef biogeochemistry: topics for research. Mar Ecol Prog Ser 373:249–256CrossRefGoogle Scholar
  6. Avis CA, Weaver AJ, Meissner KJ (2011) Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nature Geoscience. doi: 10.1038/ngeo1160
  7. Bates NR, Samuels L, Merlivat L (2001) Biogeochemical and physical factors influencing sea water fCO2 and air-sea CO2 exchange on the Bermuda coral reef. Limnol Oceanogr 46:833–846CrossRefGoogle Scholar
  8. Bates NR, Amat A, Andersson AJ (2010) Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification. Biogeosciences 7:2509–2530CrossRefGoogle Scholar
  9. Blanchon P, Shaw J (1995) Reef drowning during the last deglaciation - evidence for catastrophic sea-level rise and ice-sheet collapse - Reply. Geology 23:958–959CrossRefGoogle Scholar
  10. Boville BA, Gent PR (1998) The NCAR Climate System Model, version one. J Clim 11:1115–1130CrossRefGoogle Scholar
  11. Boylan P, Kleypas J (2008) New insights into the exposure and sensitivity of coral reefs to ocean warming. Proc 11th Int Coral Reef Symp 2:854–858Google Scholar
  12. Brown BE, Dunne RP, Goodson MS, Douglas AE (2002) Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21:119–126Google Scholar
  13. Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS ONE 2(8): e711. doi: 10.1371/journal.pone.0000711
  14. Buddemeier RW, Smith SV (1988) Coral-reef growth in an era of rapidly rising sea-level—predictions and suggestions for long-term research. Coral Reefs 7:51–56CrossRefGoogle Scholar
  15. Castillo KD, Helmuth BST (2005) Influence of thermal history on the response of Montastraea annularis to short-term temperature exposure. Mar Biol 148:261–270CrossRefGoogle Scholar
  16. Chalker BE, Barnes DJ, Dunlap WC, Jokiel PL (1988) Light and reef-building corals. Interdisc Sci Rev 13:222–237CrossRefGoogle Scholar
  17. Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Department of Energy, Office of Biological & Environmental Research, Washington, DC, USAGoogle Scholar
  18. Coles SL, Jokiel PL, Lewis CR (1976) Thermal tolerance in tropical versus subtropical Pacific reef corals. Pac Sci 30:159–166Google Scholar
  19. Collins M, Soon-Il A, Cai W, Ganachaud A, Guilyardi E, Fei–Fei J, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397CrossRefGoogle Scholar
  20. Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett 37:L10701CrossRefGoogle Scholar
  21. Domingues CM, Church JA, White NJ, Glecker PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1093PubMedCrossRefGoogle Scholar
  22. Donner SD, Skirving WJ, Little CM, Oppenheimer M, Hoegh-Guldberg O (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Global Change Biol 11:2251–2265CrossRefGoogle Scholar
  23. Eby M, Zickfeld K, Montenegro A, Archer D, Meissner KJ, Weaver AJ (2009) Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. J Clim 22:2501–2511CrossRefGoogle Scholar
  24. Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer Science, New York, pp 151–176CrossRefGoogle Scholar
  25. Ewen TL, Weaver AJ, Eby M (2004) Sensitivity of the inorganic ocean carbon cycle to future climate warming in the UVic coupled model. Atmos-Ocean 42:23–42CrossRefGoogle Scholar
  26. Frankignoulle M, Gattuso JP, Biondo R, Bourgel I, Copin-Montégut G, Pichon M (1996) Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon dynamics and measurement of air-sea CO2 exchanges. Mar Ecol Prog Ser 145:123–132CrossRefGoogle Scholar
  27. Gattuso J-P, Pichon M, Delesalle D, Canon C, Frankignoulle M (1996) Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Mar Ecol Prog Ser 145:109–121CrossRefGoogle Scholar
  28. Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global Planet Change 18:37–46CrossRefGoogle Scholar
  29. Glynn PW (1988) El-Niño Southern Oscillation 1982–1983—Nearshore population, community, and ecosystem responses. Annu Rev Ecol Syst 19:309–345Google Scholar
  30. Glynn PW (1991) Coral-reef bleaching in the 1980s and possible connections with global warming. Trends Ecol Evol 6:175–179PubMedCrossRefGoogle Scholar
  31. Golbuu Y, Victor S, Penlan L, Idip D, Emurois C (2007) Palau’s coral reefs show differential habitat recovery following the 1998 bleaching event. Coral Reefs 26:319–332CrossRefGoogle Scholar
  32. Goreau TJ, Hayes RL (1994) Coral bleaching and ocean hot-spots. Ambio 23:176–180Google Scholar
  33. Graham NAJ, Nash KL, Kool JT (2011) Coral reef recovery dynamics in a changing world. Coral Reefs 30:283–294CrossRefGoogle Scholar
  34. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean-atmosphere general circulation models, progress and challenges. Bull Am Meterol Soc 90:325–340CrossRefGoogle Scholar
  35. Guinotte JM, Buddemeier RW, Kleypas JA (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22:551–558CrossRefGoogle Scholar
  36. Halford A, Cheal AJ, Ryan D, Williams DM (2004) Resilience to large-scale disturbance in coral and fish assemblages on the Great Barrier Reef. Ecology 85:1892–1905CrossRefGoogle Scholar
  37. Hibler WD (1979) Dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846CrossRefGoogle Scholar
  38. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866CrossRefGoogle Scholar
  39. Hoegh-Guldberg O (2004) Coral reefs in a century of rapid environmental change. Symbiosis 37:1–31Google Scholar
  40. Hoegh-Guldberg O (2005) Low coral cover in a high-CO2 world. J Geophys Res C 110: C09S06. doi: 10.1029/2004JC002528
  41. Hoegh-Guldberg O (2008) Climate change and coral reefs: Trojan horse or false prophecy? Coral Reefs 28:569–575CrossRefGoogle Scholar
  42. Hoegh-Guldberg O (2011) Coral reef ecosystems and anthropogenic climate change. Reg Environ Change 11:S215–S227CrossRefGoogle Scholar
  43. Hoegh-Guldberg O, Fine M, Skirving W, Johnstone R, Dove S, Strong A (2005) Coral bleaching following wintry weather. Limnol Oceanogr 50:265–271CrossRefGoogle Scholar
  44. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742PubMedCrossRefGoogle Scholar
  45. Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867CrossRefGoogle Scholar
  46. Jackson JBC (1992) Pleistocene perspectives on coral-reef community structure. Am Zool 32:719–731Google Scholar
  47. Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mecocosm investigation. Coral Reefs 27:473–483CrossRefGoogle Scholar
  48. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  49. Kawahata H, Suzuki A, Ayukai T, Goto K (2000) Distribution of the fugacity of carbon dioxide in the surface seawater of the Great Barrier Reef. Mar Chem 72:257–272CrossRefGoogle Scholar
  50. Kleypas JA, Langdon C (2006) Coral reefs and changing seawater chemistry. In: Phinney JT, Hoegh-Guldberg O, Kleypas JA, Skirving W, Strong A (eds) Coral reefs and climate change: science and management. AGU Monogr Ser, Coastal and estuarine studies. American Geophysical Union, Washington, DC, pp 73–110CrossRefGoogle Scholar
  51. Kleypas JA, McManus JW, Menez LAB (1999a) Environmental limits to coral reef development: Where do we draw the line? Am Zool 39:146–159Google Scholar
  52. Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999b) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120PubMedCrossRefGoogle Scholar
  53. Kleypas JA, Anthony KRN, Gattuso J-P (2011) Coral reefs modify their seawater carbon chemistry–case study from a barrier reef (Mooréa, French Polynesia). Global Change Biol 17:3667–3678CrossRefGoogle Scholar
  54. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res C 110: C09S07. doi: 10.1029/2004JC002576
  55. Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles 14:639–654CrossRefGoogle Scholar
  56. Leclercq N, Gattuso JP, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47:558–564CrossRefGoogle Scholar
  57. Leloup J, Lengaigne M, Boulanger J-P (2008) Twentieth century ENSO characteristics in the IPCC database. Clim Dyn 30:277–291CrossRefGoogle Scholar
  58. Liu G, Strong AE, Skirving W (2003) Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. EOS Trans Am Geophys Union 84:137CrossRefGoogle Scholar
  59. Marubini F, Ferrier-Pages C, Cuif JP (2003) Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. Proc R Soc Lond B 270:179–184CrossRefGoogle Scholar
  60. Matthews HD, Weaver AJ, Meissner KJ (2005) Terrestrial carbon cycle dynamics under recent and future climate change. J Clim 18:1609–1628CrossRefGoogle Scholar
  61. McPhaden MJ (1999) Genesis and evolution of the 1997–98 El Niño. Science 283:950–954PubMedCrossRefGoogle Scholar
  62. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NYGoogle Scholar
  63. Meissner KJ, Weaver AJ, Matthews HD, Cox PM (2003) The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model. Clim Dyn 21:515–537CrossRefGoogle Scholar
  64. Montaggioni LF (2005) History of Indo-Pacific coral reef systems since the last glaciation: Development patterns and controlling factors. Earth Sci Rev 71:1–75CrossRefGoogle Scholar
  65. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756PubMedCrossRefGoogle Scholar
  66. Nakicenovic N, Swart R (eds) (2000) Emission scenarios. Cambridge University Press, Geneva, SwitzerlandGoogle Scholar
  67. Ohde S, van Woesik R (1999) Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bull Mar Sci 65(2):559–576Google Scholar
  68. Oliver J, Berkelmans R, Eakin M (2009) Coral bleaching in space and time (Chapter 3). In: van Oppen MJH, Lough JM (eds) Coral bleaching: patterns, processes, causes and consequences. Springer, Heidelberg, pp 21–39Google Scholar
  69. Pacanowski RC (1995) MOM 2 documentation: Users guide and reference manual, Version 1.0 GFDL Ocean Group Technical Report. Geophysical Fluid Dynamics Laboratory, PrincetonGoogle Scholar
  70. Pandolfi JM (1996) Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: Constancy during global change. Paleobiology 22:152–176Google Scholar
  71. Riahi K, Grubler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74:887–935CrossRefGoogle Scholar
  72. Royal Society (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society: the science policy section, LondonGoogle Scholar
  73. Schmittner A, Oschlies A, Matthews HD, Galbraith ED (2008) Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochem Cycles 22: GB1013. doi: 10.1029/2007GB002953
  74. Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293CrossRefGoogle Scholar
  75. Semtner AJ (1976) Model for thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6:379–389CrossRefGoogle Scholar
  76. Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J Geophys Res C 112:C05004CrossRefGoogle Scholar
  77. Smith SV, Veeh HH (1989) Mass balance of biogeochemically active materials (C, N, P) in a hypersaline gulf. Estuar Coast Shelf Sci 29:195–215CrossRefGoogle Scholar
  78. Strong AE, Kearns EJ, Gjovig KK (2000) Sea surface temperature signals from satellites - An update. Geophys Res Lett 27:1667–1670CrossRefGoogle Scholar
  79. Suzuki A, Kawahata H (1999) Partial pressure of carbon dioxide in coral reef lagoon waters: Comparative study of atolls and barrier reefs in the Indo-Pacific oceans. J Oceanogr 55:731–745CrossRefGoogle Scholar
  80. Suzuki A, Nakamori T, Kayanne H (1995) The mechanism of production enhancement in coral reef carbonate systems: model and empirical results. Sediment Geol 99:259–280CrossRefGoogle Scholar
  81. Tevena L, Karnauskas M, Logan CA, Bianucci L, Currie JC, Kleypas, JA (2011) Predicting coral bleaching hotspots: the role of regional variability in thermal stress and potential adaptation rates. Coral Reefs. doi: 10.1007/s00338-011-0812-9
  82. Toscano MA, Liu G, Guch IC, Casey KS, Strong AE (2000) Improved prediction of coral bleaching using high-resolution HotSpot anomaly mapping. 9th Int Coral Reef Symp:1143-1147Google Scholar
  83. van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Science 1:81–95CrossRefGoogle Scholar
  84. van Vuuren DP, Den Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, van Ruijven B, Wonink S, van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159CrossRefGoogle Scholar
  85. Veron JEN (2008) A reef in time: the Great Barrier Reef from beginning to end. Belknap Press of Harvard University Press. Cambridge, Mass, USAGoogle Scholar
  86. Veron JEN, Hoegh-Guldberg O, Lenton TM, Lough JM, Obura DO, Pearce-Kelly P, Sheppard CRC, Spalding M, Stafford-Smith MG, Rogers AD (2009) The coral reef crisis: The critical importance of < 350 ppm CO2. Mar Pollut Bull 58:1428–1436PubMedCrossRefGoogle Scholar
  87. Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, Ewen TL, Fanning AF, Holland MM, MacFadyen A, Matthews HD, Meissner KJ, Saenko O, Schmittner A, Wang HX, Yoshimori M (2001) The UVic Earth System Climate Model: Model description, climatology, and applications to past, present and future climates. Atmos-Ocean 39:361–428CrossRefGoogle Scholar
  88. Webster JM, Clague DA, Riker-Coleman K, Gallup C, Braga JC, Potts D, Moore JG, Winterer EL, Paull CK (2004) Drowning of the - 150 m reef off Hawaii: A casualty of global meltwater pulse 1A? Geology 32:249–252CrossRefGoogle Scholar
  89. Wilkinson CR (1999) Global and local threats to coral reef functioning and existence: review and predictions. Mar Freshw Res 50:867–878CrossRefGoogle Scholar
  90. Wilkinson C (2000) Status of coral reefs of the world: 2000. In: Wilkinson C (ed) Global Coral Reef Monitoring Network. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  91. Wilkinson C (2008) Status of coral reefs of the world: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre. Townsville, AustraliaGoogle Scholar
  92. Yamano H, Sugihara K, Nomura K (2011) Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys Res Lett 38: L04601. doi: 10.1029/2010GL046474
  93. Yates KK, Halley RB (2006) CO3 2− concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosciences 3:357–369CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Climate Change Research Centre, Faculty of ScienceUniversity of New South WalesSydneyAustralia

Personalised recommendations