Advertisement

Coral Reefs

, Volume 31, Issue 2, pp 473–485 | Cite as

The effect of temperature stress on coral–Symbiodinium associations containing distinct symbiont types

  • P. L. FisherEmail author
  • M. K. Malme
  • S. Dove
Report

Abstract

Several studies have demonstrated that the temperature tolerance of scleractinian reef-building corals is controlled, in part, by hosting physiologically distinct symbiotic algae. We investigated the thermal tolerance of coral–algal associations within seven common species of reef-building corals hosting distinct Symbiodinium sub-clades collected from Heron Island during experimentally induced bleaching conditions. During experimental heating, photosynthetic fitness was assessed by the dark-adapted yield of PSII (F v/F m), and excitation pressure across PSII (Q m) of each coral–algal association using pulse amplitude modulation fluorometry. The onset of bleaching was determined by the measurement of Symbiodinium cell density. Using the ribosomal internal transcribed spacer 2 (ITS-2) region, we showed that Symbiodinium type–coral host associations were temporally and spatially conserved in a high proportion of the colonies sampled within each species. Generally, the species Acropora millepora, Platygyra daedalea, Acropora aspera and Acropora formosa contained Symbiodinium ITS-2 type C3, whereas the species Montipora digitata, Porites cylindrica and Porites lutea contained Symbiodinium type C15. Bleaching susceptibility showed some association with Symbiodinium type, but further research is required to confirm this. Corals hosting C3 Symbiodinium displayed higher reductions in F v/F m during heating compared to their C15 counterparts, irrespective of host species. However, a corresponding reduction in Symbiodinium density was not observed. Nonetheless, A. aspera and A. formosa showed significant reductions in Symbiodinium density relative to controls. This correlated with large increases in Q m and decreases in F v/F m in heated explants. Our results suggest a range of bleaching susceptibilities for the coral species investigated, with A. aspera and A. formosa showing the greatest susceptibility to bleaching and M. digitata showing the lowest bleaching susceptibility. The data provide strong evidence for distinct differences in temperature tolerance between C3 and C15 Symbiodinium types when in-hospite; however, future studies addressing the confounding effect of host species would help to confirm this.

Keywords

Symbiodinium Coral bleaching Thermal stress Photosynthesis Light pressure 

Notes

Acknowledgments

Funding was provided by the Australian Research Council grant (A00106021) held by Dr Sophie Dove. The authors would like to thank Dr Alistair Grinham and Dr Mark Davey for their contributions during fieldwork. We are also grateful to Dr Simon Davy and Jacqui Barber for their comments on the manuscript. The authors would also like to thank the anonymous referees and Dr Mark Warner for the comments they provided on this manuscript.

References

  1. Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc, B 275:2273–2282CrossRefGoogle Scholar
  2. Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Coral reefs: corals’ adaptive response to climate change. Nature 430:741–742PubMedCrossRefGoogle Scholar
  3. Barbrook AC, Visram S, Douglas AE TR, Howe CJ (2006) Molecular diversity of dinoflagellate symbionts of Cnidaria: The psbA minicircle of Symbiodinium. Protist 157:159–171PubMedCrossRefGoogle Scholar
  4. Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘Nugget of Hope’ for coral reefs in an era of climate change. Proc R Soc Lond, B 273:2305–2312CrossRefGoogle Scholar
  5. Brown BE, Ogden JC (1993) Coral bleaching. Sci Am 268:64–70CrossRefGoogle Scholar
  6. Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism. Bioscience 43:320–326CrossRefGoogle Scholar
  7. Cantin NE, van Oppen MJH, Willis BL, Mieog JC, Negri AP (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405–414CrossRefGoogle Scholar
  8. Coleman AW, Suarez A, Goff LJ (1994) Molecular delineation of species and syngens in Volvocacean green algae (Chlorophyta). J Phycol 30:80–90CrossRefGoogle Scholar
  9. DeSalvo MK, Sunagawa S, Fisher PL, Voolstra CR, Iglesias-Prieto R, Medina M (2010) Coral host transcriptomic states are correlated with Symbiodinium genotypes. Mol Ecol 19:1174–1186PubMedCrossRefGoogle Scholar
  10. Dove S (2004) Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar Ecol Prog Ser 272:99–116CrossRefGoogle Scholar
  11. Dove S, Ortiz J-C, Enriquez S, Fine M, Fisher P, Iglesias-Prieto R, Thornhill D, Hoegh-Guldberg O (2006) Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol Oceanogr 51:1149–1158CrossRefGoogle Scholar
  12. Edmunds PJ (1994) Evidences that reef-wide patterns of coral bleaching may be the result of the distribution of bleaching-susceptible clones. Mar Biol 121:137–142CrossRefGoogle Scholar
  13. Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032CrossRefGoogle Scholar
  14. Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen MJH (2004) Identity and diversity of coral endosymbionts (Zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458PubMedCrossRefGoogle Scholar
  15. Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174CrossRefGoogle Scholar
  16. Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709CrossRefGoogle Scholar
  17. Fine M, Meroz-Fine E, Hoegh-Guldberg O (2005) Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef. J Exp Biol 208:75–81PubMedCrossRefGoogle Scholar
  18. Fitt WK, Warner ME (1995) Bleaching patterns of four species of Caribbean reef corals. Biol Bull 189:298–307CrossRefGoogle Scholar
  19. Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, Gomez M, Fisher PL, LaJeunesse TC, Pantos O, Iglesias-Prieto R, Franklin DJ, Rodrigues LJ, Torregiani JM, van Woesik R, Lesser MP (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110CrossRefGoogle Scholar
  20. Gorbunov MY, Kolber Z, Lesser MP, Falkowski PG (2001) Photosynthesis and photoprotection in symbiotic corals. Limnol Oceanogr 46:75–85CrossRefGoogle Scholar
  21. Goreau TJ, Macfarlane AH (1990) Reduced growth rate of Montastrea annularis following the 1987–1988 coral-bleaching event. Coral Reefs 8:211–215CrossRefGoogle Scholar
  22. Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus ADME, Overstreet RM, Porter JW, Smith GW, VG R (2000) Emerging marine disease - Climate links and anthropogenic factors. Science 285:1505–1510CrossRefGoogle Scholar
  23. Harvell CD, Kim K, Quirolo C, Weir J, Smith G (2001) Coral bleaching and disease: contributors to 1998 mass mortality in Briareum asbestinum (Octocorallia, Gorgonacea). Hydrobiologia 460:97–104CrossRefGoogle Scholar
  24. Hennige S, Suggett D, Warner M, McDougall K, Smith D (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195CrossRefGoogle Scholar
  25. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866CrossRefGoogle Scholar
  26. Hoegh-Guldberg O, Jones RJ (1999) Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar Ecol Prog Ser 183:73–86CrossRefGoogle Scholar
  27. Hoegh-Guldberg O, Smith GJ (1989) The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J Exp Mar Biol Ecol 1989:279–303CrossRefGoogle Scholar
  28. Iglesias-Prieto R (1997) Temperature-dependant inactivation of photosystem II in symbiotic dinoflagellates. In: Proceedings of 8th international coral reef symposium, vol, 2, pp 1313–1318Google Scholar
  29. Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadraticum in culture. Proc Natl Acad Sci USA 89:10302–10305PubMedCrossRefGoogle Scholar
  30. Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the Eastern Pacific. Proc R Soc Lond, B 271:1757–1763CrossRefGoogle Scholar
  31. Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in Zooxanthellae. Plant Cell Environ 21:1219–1230CrossRefGoogle Scholar
  32. Jones RJ, Ward S, Amri AY, Hoegh-Guldberg O (2000) Changes in quantum efficiency of photosystem II of symbiotic dinoflagellates of corals after heat stress, and of bleached corals sampled after the 1998 Great Barrier Reef mass bleaching event. Mar Freshw Res 51:63–71CrossRefGoogle Scholar
  33. Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc, B 275:1359–1365CrossRefGoogle Scholar
  34. Kaniewska P, Anthony K, Hoegh-Guldberg O (2008) Variation in colony geometry modulates internal light levels in branching corals, Acropora humilis and Stylophora pistillata. Mar Biol 155:649–660CrossRefGoogle Scholar
  35. Kuguru B, Winters G, Beer S, Santos S, Chadwick N (2007) Adaptation strategies of the corallimorpharian Rhodactis rhodostoma to irradiance and temperature. Mar Biol 151:1287–1298CrossRefGoogle Scholar
  36. LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “Species” level marker. J Phycol 37:866–880CrossRefGoogle Scholar
  37. LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  38. LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581PubMedCrossRefGoogle Scholar
  39. LaJeunesse TC, Loh WK, Van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in Southern Great Barrier Reef corals relative to those of the caribbean. Limnol Oceanogr 48:2046–2054CrossRefGoogle Scholar
  40. LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magaña AL, Pérez AL, Reyes-Bonilla H, Warner ME (2010) Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance. Proc R Soc, B 277:2925–2934CrossRefGoogle Scholar
  41. Leggat W, Marendy EM, Baillie BK, Whitney SM, Ludwig M, Badger MR, Yellowlees D (2002) Dinoflagellate symbioses: strategies and adaptations for the acquisition and fixation of inorganic carbon. Funct Plant Biol 29:309–322CrossRefGoogle Scholar
  42. Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23:367–377CrossRefGoogle Scholar
  43. Lesser MP, Shick JM (1989) Effects of irradiance and ultraviolet radiation on photo adaptation in the Zooxathellae of Aiptasia pallida: primary production, photoinhibition, enzymatic defences against oxygen toxicity. Mar Biol 102:243–255CrossRefGoogle Scholar
  44. Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494PubMedCrossRefGoogle Scholar
  45. Loh WK, Loi T, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar Ecol Prog Ser 222:97–107CrossRefGoogle Scholar
  46. Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, Van Woesik R (2001) Coral bleaching: the winners and losers. Ecol Lett 4:122–131CrossRefGoogle Scholar
  47. Manning MM, Gates RD (2008) Diversity in populations of free-living Symbiodinium from a Caribbean and Pacific reef. Limnol Oceanogr 53:1853–1861CrossRefGoogle Scholar
  48. Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163CrossRefGoogle Scholar
  49. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence–A practical guide. J Exp Bot 51:659–668PubMedCrossRefGoogle Scholar
  50. McClanahan TR (2004) The relationship between bleaching and mortality of common corals. Mar Biol 144:1239–1245CrossRefGoogle Scholar
  51. Middlebrook R, Anthony KRN, Hoegh-Guldberg O, Dove S (2010) Heating rate and symbiont productivity are key factors determining thermal stress in the reef-building coral Acropora formosa. J Exp Biol 213:1026–1034PubMedCrossRefGoogle Scholar
  52. Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460CrossRefGoogle Scholar
  53. Oliver T, Palumbi S (2011) Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30:429–440CrossRefGoogle Scholar
  54. Pettay DT, LaJeunesse TC (2007) Microsatellites from clade B Symbiodinium spp. specialized for Caribbean corals in the genus Madracis. Mol Ecol Notes 7:1271–1274CrossRefGoogle Scholar
  55. Pettay DT, LaJeunesse TC (2009) Microsatellite loci for assessing genetic diversity, dispersal and clonality of coral symbionts in ‘stress-tolerant’ clade D Symbiodinium. Mol Ecol Resources 9:1022–1025CrossRefGoogle Scholar
  56. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497PubMedCrossRefGoogle Scholar
  57. Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 139:1069–1078CrossRefGoogle Scholar
  58. Pochon X, LaJeunesse TC, Pawlowski J (2004) Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Mar Biol 146:17–27CrossRefGoogle Scholar
  59. Pochon X, Stat M, Takabayashi M, Chasqui L, Chauka LJ, Logan DDK, Gates RD (2010) Comparison od endosymbiotic and free-living Symbiodinium (Dinophyceae) diversity in a Hawaiian reef environment. J Phycol 46:53–65CrossRefGoogle Scholar
  60. Robison JD, Warner ME (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol 42:568–579CrossRefGoogle Scholar
  61. Rodriguez-Roman A, Iglesias-Prieto R (2005) Regulation of photochemical activity in cultured symbiotic dinoflagellates under nitrate limitation and deprivation. Mar Biol 146:1063–1073CrossRefGoogle Scholar
  62. Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742PubMedCrossRefGoogle Scholar
  63. Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351PubMedCrossRefGoogle Scholar
  64. Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 16:3721–3733PubMedCrossRefGoogle Scholar
  65. Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA 105:10444–10449PubMedCrossRefGoogle Scholar
  66. Stat M, Pochon X, Cowie ROM P, Gates RD (2009) Specificity in communities of Symbiodinium in corals from Johnston Atoll. Mar Ecol Prog Ser 386:83–96Google Scholar
  67. Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of Zooxanthellae from reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74CrossRefGoogle Scholar
  68. Takahashi S, Nakamura T, Sakamizu M, van Woesik R, Yamasak H (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45:251–255PubMedCrossRefGoogle Scholar
  69. Tchernov D, Gorbunov MY, de Vargas C, Narayan Yadav S, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535PubMedCrossRefGoogle Scholar
  70. Thornhill D, LaJeunesse T, Kemp D, Fitt W, Schmidt G (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722CrossRefGoogle Scholar
  71. Thornhill DJ, Kemp DW, Bruns BU, Fitt WK, Schmidt GW (2008) Correspondence between cold tolerance and temperate biogeography in a western atlantic Symbiodinium (Dinophyta) lineage. J Phycol 44:1126–1135CrossRefGoogle Scholar
  72. van Oppen MJH, Gates RD (2006) Conservation genetics and the resilience of reef-building corals. Mol Ecol 15:3863–3883PubMedCrossRefGoogle Scholar
  73. Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080PubMedCrossRefGoogle Scholar
  74. Ward S, Hoegh-Guldberg O, Harrison P (2000) Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. In: Proceedings of 9th international coral reef symposium, vol 2, pp 1123–1128Google Scholar
  75. Ware JR, Fautin DG, Buddemeier RW (1996) Patterns of coral bleaching: modeling the adaptive bleaching hypothesis. Ecol Model 84:199–214CrossRefGoogle Scholar
  76. Warner ME, Berry-Lowe S (2006) Differential xanthophyll cycling and photochemical activity in symbiotic dinoflagellates in multiple locations of three species of Caribbean coral. J Exp Mar Biol Ecol 339:86–95CrossRefGoogle Scholar
  77. Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012PubMedCrossRefGoogle Scholar
  78. Warner ME, Lesser MP, Ralph PJ (2010) Chlorophyll fluorescence in reef building corals. In: Suggett DJ, Prasil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Global Change InstituteUniversity of QueenslandSt LuciaAustralia
  2. 2.ARC Centre of Excellence for Coral Reef StudiesUniversity of Queensland NodeSt LuciaAustralia
  3. 3.School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations