Coral Reefs

, Volume 31, Issue 2, pp 401–414 | Cite as

Interactive effects of climate change and eutrophication on the dinoflagellate-bearing benthic foraminifer Marginopora vertebralis

  • S. Uthicke
  • N. Vogel
  • J. Doyle
  • C. Schmidt
  • C. Humphrey
Report

Abstract

Elevated sea surface temperatures caused by global climate change and increased nutrient concentrations resulting from land runoff both are stressors for calcifying coral reef organisms. Here, we test the hypothesis that increased temperature leads to bleaching in dinoflagellate-bearing foraminifera similar to corals and that increased nutrients through runoff can exaggerate stress on the holobiont. In an experiment manipulating temperatures alone, we have shown that mortality of Marginopora vertebralis increased with temperatures. Most individuals died after 7 days at 34°C, ~5°C above current summer maxima. Survival at 37 days was >98% at 28°C. After 7 days of exposure to 31 or 32°C, photosynthesis of the endosymbionts was compromised, as indicated by several photophysiological parameters (effective quantum yield and apparent photosynthetic rate). In a flow-though experiment manipulating both temperature (three levels, 26, 29 and 31°C) and nitrate concentrations (3 levels, ~0.5, 1.0 and 1.4 μmol l−1 NO3 ), elevated temperature had a significant negative effect on most parameters measured. At 31°C, most photopigments (measured by UPLC) in the foraminifera were significantly reduced. The only pigment that increased was the photoprotective diatoxanthin. Several other parameters measured (maximum and effective quantum yield, O2 production in light, organic carbon contents) also significantly decreased with temperature. Optode-based respirometry demonstrated that the presence of symbionts at elevated temperatures represents a net carbon loss for the host. Growth rates of M. vertebralis and mortality at the end of the experiment were significantly affected by both temperature increase and nitrate addition. We conclude that these foraminifera bleach in a similar fashion to corals and that global sea surface temperature change and nitrate increases are stressors for these protists. Furthermore, this provides support for the hypothesis that management of local stressors elevates resilience of coral reefs to global stressors.

Keywords

Coral reef ecology Climate change Land runoff Benthos Symbiosis 

Notes

Acknowledgments

This research was supported by the Australian Government’s Marine and Tropical Sciences Research Facility, implemented in North Queensland by the Reef and Rainforest Research Centre Ltd. We acknowledge the Reef Plan Marine Monitoring Program, developed by the Great Barrier Reef Marine Park Authority and funded by the Department of Environment, Water, Heritage and the Arts, for providing data and information.

Supplementary material

338_2011_851_MOESM1_ESM.doc (112 kb)
Supplementary material 1 (DOC 112 kb)

References

  1. Berkelmans R (2009) Bleaching and mortality thresholds: how much is too much? In: van Oppen MJH, Lough JM (eds) Coral bleaching, patterns, processes, causes and consequences. Springer, Berlin, pp 103–119Google Scholar
  2. Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:129–138CrossRefGoogle Scholar
  3. Brown BE, Ambarsari I, Warner ME, Fitt WK, Dunne RP, Gibb SW, Cummings DG (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18:99–105CrossRefGoogle Scholar
  4. Cooper TF, Ulstrup KE (2009) Mesoscale variation in the photophysiology of the reef building coral Pocillopora damicornis along an environmental gradient. Estuar Coast Shelf Sci 83:186–196CrossRefGoogle Scholar
  5. Cooper TF, Uthicke S, Humphrey C, Fabricius K (2007) Gradients in water column nutrients, sediments, irradiance and coral reef development in the Whitsunday Region, central Great Barrier Reef. Estuar Coast Shelf Sci 74:458–470CrossRefGoogle Scholar
  6. Development Core Team R (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  7. Devlin M, Schaffelke B (2009) Spatial extent of riverine flood plumes and exposure of marine ecosystems in the Tully coastal region, Great Barrier Reef. Mar Freshw Res 60:1109–1122CrossRefGoogle Scholar
  8. Dubinsky Z, Berman-Frank I (2001) Uncoupling primary production from population growth in photosynthesizing organisms in aquatic ecosystems. Aquatic Sciences-Research Across Boundaries 63:4–17Google Scholar
  9. Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146PubMedCrossRefGoogle Scholar
  10. Fabricius KE, Okaji K, De’ath G (2010) Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs 29:1–13CrossRefGoogle Scholar
  11. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1:165–169CrossRefGoogle Scholar
  12. Ferrier-Pages C, Schoelzke V, Jaubert J, Muscatine L, Hoegh-Guldberg O (2001) Response of a scleractinian coral, Stylophora pistillata, to iron and nitrate enrichment. J Exp Mar Biol Ecol 259:249–261PubMedCrossRefGoogle Scholar
  13. Garcia-Cuetos L, Pochon X, Pawlowski J (2005) Molecular evidence for host-symbiont specificity in soritid foraminifera. Protist 156:399–412PubMedCrossRefGoogle Scholar
  14. Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17CrossRefGoogle Scholar
  15. Goss R, Ann Pinto E, Wilhelm C, Richter M (2006) The importance of a highly active and ΔpH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. J Plant Physiol 163:1008–1021PubMedCrossRefGoogle Scholar
  16. Hallock P (1981) Algal symbiosis: a mathematical analysis. Mar Biol 62:249–255CrossRefGoogle Scholar
  17. Hallock P (2000) Symbiont-bearing foraminifera: harbingers of global change? Micropaleontol 46(suppl. 1):95–104Google Scholar
  18. Hallock P, Talge HK (1993) Symbiont loss (“Bleaching”) in the reef -dwelling benthic foraminifer Amphistegina gibbosa in the Florida Keys in 1991–92. In: Ginsburg R (ed) Global aspects of coral reefs: Health. hazards and history, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, pp V8–V14Google Scholar
  19. Hallock P, Williams DE (2006) Bleaching in foraminifer with algal symbionts: implications for reef monitoring and risk assessment. Anuário do Instituto de Geociêncieas 29:108–128Google Scholar
  20. Hallock P, Forward LB, Hansen HJ (1986) Influence of environment on the test shape of Amphistegina. J Foraminifer Res 16:224–231CrossRefGoogle Scholar
  21. Hallock P, Talge HK, Smith K, Cockey E (1992) Bleaching in a reef-dwelling foraminifer: Amphistegina gibbosa. Proc 7th Int Coral Reef Symp 1:44–49Google Scholar
  22. Hallock P, Talge HK, Cockey EM, Muller RG (1995) A new disease in reef-dwelling Foraminifera: implication for coastal sedimentation. J Foraminifer Res 25:280–286CrossRefGoogle Scholar
  23. Hallock P, Lidz BH, Cockey-Burkhard EM, Donnelly KB (2003) Foraminifera as bioindicators in coral reef assessment and monitoring: the FORAM index. Environ Monit Assess 81:221–238PubMedCrossRefGoogle Scholar
  24. Hallock P, Williams DE, Toler SK, Fisher EM, Talge HK (2006) Bleaching in reef-dwelling foraminifers: implications for reef decline. Proc 10th Int Coral Reef Symp:729–737Google Scholar
  25. Hintze J (2001) NCSS and PASS. Number Cruncher Statistical Systems. Kaysville, Utah. WWW.NCSS.COM
  26. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866CrossRefGoogle Scholar
  27. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737PubMedCrossRefGoogle Scholar
  28. Holzmann M, Hohenegger J, Hallock P, Piller WE, Pawlowski J (2001) Molecular phylogeny of large milioid foraminifera (Soritacea Ehrenberg 1839). Mar Micropaleontol 43:57–74CrossRefGoogle Scholar
  29. Jakob T, Goss R, Wilhelm C (2001) Unusual pH-dependence of diadinoxanthin de-epoxidase activation causes chlororespiratory induced accumulation of diatoxanthin in the diatom Phaeodactylum tricornutum. J Plant Physiol 158:383–390CrossRefGoogle Scholar
  30. Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230CrossRefGoogle Scholar
  31. Kleypas JA, Danabasoglu G, Lough JM (2008) Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events. Geophys Res Lett 35:L03613CrossRefGoogle Scholar
  32. Kuile ter B, Erez J (1984) In situ growth rate experiments on the symbiont-bearing foraminifera Amphistegina lobifera and Amphisorus hemprichii. J Foraminifer Res 14:262–276CrossRefGoogle Scholar
  33. Kuile ter B, Erez J, Lee JJ (1987) The role of feeding in the metabolism of larger symbiont bearing foraminifera. Symbiosis 4:335–350Google Scholar
  34. Kuile ter B, Erez J, Padan E (1989) Competition for inorganic carbon between photosynthesis and calcification in the symbiont-bearing foraminifer Amphistegina lobifera. Mar Biol 103:253–259CrossRefGoogle Scholar
  35. Langer MR, Silk MT, Lipps JH (1997) Global ocean carbonate and carbon dioxide production: the role of reef Foraminifera. J Foraminifer Res 27:271–277CrossRefGoogle Scholar
  36. Lee JJ (2006) Algal symbiosis in larger foraminifera. Symbiosis 42:63–75Google Scholar
  37. Lee JJ, Sang K, Kuile ter B, Strauss E, Lee PJ, Faber WW Jr (1991) Nutritional and related experiments on laboratory maintenance of three species of symbiont-bearing, large foraminifera. Mar Biol 109:417–425CrossRefGoogle Scholar
  38. Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192CrossRefGoogle Scholar
  39. Lough J (2007) Climate and climate change on the Great Barrier Reef. In: Johnson JE, Marshall PA (eds) Climate change and the Great Barrier Reef: A vulnerability assessment. Great Barrier Reef Marine Park Authority, Townsville, pp 15–50Google Scholar
  40. Marshall P, Johnson J (2007) The Great Barrier Reef and climate change: vulnerability and management implications. In: Johnson JE, Marshall PA (eds) Climate change and the Great Barrier Reef. Great Barrier Reef Marine Park Authority and the Australian Greenhouse Office, Townsville, pp 774–801Google Scholar
  41. Marubini F, Davies PS (1996) Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol 127:319–328CrossRefGoogle Scholar
  42. Muller P (1978) 14 Carbon fixation and loss in a foraminiferal-algal symbiont system. J Foraminifer Res 8:35–41CrossRefGoogle Scholar
  43. Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566PubMedCrossRefGoogle Scholar
  44. Muscatine L, Falkowski PG, Dubinsky Z, Cook PA, McCloskey LR (1989) The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc R Soc Lond Ser B Biol Sci 236:311–324CrossRefGoogle Scholar
  45. Nobes K, Uthicke S, Henderson R (2008) Is light the limiting factor for the distribution of benthic symbiont bearing Foraminifera on the Great Barrier Reef? J Exp Mar Biol Ecol 363:48–57CrossRefGoogle Scholar
  46. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958PubMedCrossRefGoogle Scholar
  47. Pawlowski J (2000) Introduction to the molecular systematics of Foraminifera. Micropaleontol 46:1–12Google Scholar
  48. Pochon X, Garcia-Cuetos L, Baker AC, Castella E, Pawlowski J (2007) One-year survey of a single Micronesian reef reveals extraordinarily rich diversity of Symbiodinium types in soritid foraminifera. Coral Reefs 26:867–882CrossRefGoogle Scholar
  49. Ralph PJ, Gademann R (2005) Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237CrossRefGoogle Scholar
  50. Reymond C, Uthicke S, Pandolfi J (2011) Inhibited growth of the photosymbiont-bearing foraminifera Marginopora vertebralis from the near shore Great Barrier Reef. Mar Ecol Prog Ser 435:97–109CrossRefGoogle Scholar
  51. Richardson SL (2006) Endosymbiont-bleaching in epiphytic populations of Sorites dominicensis. Symbiosis 42:103–117Google Scholar
  52. Richardson SL (2009) An overview of symbiont-bleaching in the epiphytic foraminiferan Sorites dominicensis. Smithson Contrib Mar Sci 38:429–436Google Scholar
  53. Röttger R, Berger WH (1972) Benthic Foraminifera: morphology and growth in clone cultures of Heterostegina depressa. Mar Biol 15:89–94CrossRefGoogle Scholar
  54. Röttger R, Irwan A, Schmaljohann R, Franzisket L (1980) Growth of the symbiont-bearing foraminifera Amphistegina lessonii D’Orbigny and Heterostegina depressa D’Orbigny (Protozoa). In: Schwemmler W, Schenk HEA (eds) Endocytobiology. Walter de Gruyter, Berlin, pp 125–132Google Scholar
  55. Ryle VD, Müller HR, Gentien P (1981) Automated analysis of nutrients in tropical seawater. Australian Institute of Marine Science Oceanography series AIMS-OS-82-2, p 24Google Scholar
  56. Schaffelke B, Klumpp DW (1998) Short-term nutrient pulses enhance growth and photosynthesis of the coral reef macroalga Sargassum baccularia. Mar Ecol Prog Ser 170:95–105CrossRefGoogle Scholar
  57. Schaffelke B, Mellors J, Duke N (2005) Water quality in the Great Barrier Reef region: responses of mangrove, seagrass and macroalgal communities. Mar Pollut Bull 51:279–296PubMedCrossRefGoogle Scholar
  58. Schloeder C, D’Croz L (2004) Responses of massive and branching coral species to the combined effects of water temperature and nitrate enrichment. J Exp Mar Biol Ecol 313:255–268CrossRefGoogle Scholar
  59. Schmidt C, Heinz P, Kucera M, Uthicke S (2011) Bleaching in larger benthic foraminifera hosting endosymbiotic diatoms: effects of temperature induced stress. Limnol Oceanogr 56:1287–1602Google Scholar
  60. Talge HK, Hallock P (1995) Cytological examination of symbiont loss in a benthic foraminifera, Amphistegina gibbosa. Mar Micropaleontol 26:107–113CrossRefGoogle Scholar
  61. Talge HK, Hallock P (2003) Ultrastructural responses to bleaching in Amphistegina gibbosa (Foraminifera). J Eukaryot Microbiol 50:324–333PubMedCrossRefGoogle Scholar
  62. Talge HK, Williams DE, Hallock P, Harney JN (1997) Symbiont loss in reef foraminifera: consequences for affected populations. Proc 8th Int Coral Reef Symp 1:589–594Google Scholar
  63. Tardy F, Havaux M (1997) Thylakoid membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts. Biochim Biophys Acta (BBA)-Biomembranes 1330:179–193CrossRefGoogle Scholar
  64. Tudhope AW, Scoffin TP (1988) The relative importance of benthic Foraminiferans in the production of carbonate sediment on the central Queensland shelf. Proc 6th Int Coral Reef Symp 2:583–588Google Scholar
  65. Uthicke S, Altenrath C (2010) Water column nutrients control growth and C : N ratios of symbiont-bearing benthic foraminifera on the Great Barrier Reef, Australia. Limnol Oceanogr 55:1681–1696Google Scholar
  66. Uthicke S, Nobes K (2008) Benthic Foraminifera as ecological indicators for water quality of the Great Barrier Reef. Estuar Coast Shelf Sci 78:763–773CrossRefGoogle Scholar
  67. Uthicke S, Thompson A, Schaffelke B (2010) Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia. Coral Reefs 29:209–225CrossRefGoogle Scholar
  68. Uthicke S, Patel F, Ditchburn R (2012) Elevated land runoff after European settlement perturbs persistent foraminiferal assemblages on the Great Barrier Reef. EcologyGoogle Scholar
  69. Venn AA, Wilson MA, Trapido Rosenthal HG, Keely BJ, Douglas AE (2006) The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ 29:2133–2142PubMedCrossRefGoogle Scholar
  70. Warner ME, Berry-Lowe S (2006) Differential xanthophyll cycling and photochemical activity in symbiotic dinoflagellates in multiple locations of three species of Caribbean coral. J Exp Mar Biol Ecol 339:86–95CrossRefGoogle Scholar
  71. Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012PubMedCrossRefGoogle Scholar
  72. Williams DE, Hallock P (2004) Bleaching in Amphistegina gibbosa d’Orbigny (Class Foraminifera): Observations from laboratory experiments using visible and ultraviolet light. Mar Biol 145:641–649Google Scholar
  73. Wooldridge SA (2009) A new conceptual model for the warm-water breakdown of the coral–algae endosymbiosis. Mar Freshw Res 60:483–496CrossRefGoogle Scholar
  74. Wooldridge SA, Done T (2009) Improved water quality can ameliorate effects of climate change on corals. Ecol Appl 19:1492–1499PubMedCrossRefGoogle Scholar
  75. Ziegler M, Uthicke S (2011) Photosynthetic plasticity of endosymbionts in larger benthic coral reef Foraminifera. J Exp Mar Biol Ecol 47:70–80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • S. Uthicke
    • 1
  • N. Vogel
    • 2
  • J. Doyle
    • 1
  • C. Schmidt
    • 3
  • C. Humphrey
    • 1
  1. 1.Australian Institute of Marine ScienceTownsvilleAustralia
  2. 2.Ludwig-Maximilians-UniversityMunichGermany
  3. 3.Department of GeosciencesUniversity of TübingenTübingenGermany

Personalised recommendations