Coral Reefs

, Volume 31, Issue 2, pp 383–388 | Cite as

Moorea BIOCODE barcode library as a tool for understanding predator–prey interactions: insights into the diet of common predatory coral reef fishes

  • M. Leray
  • J. T. Boehm
  • S. C. Mills
  • C. P. Meyer


Identifying species involved in consumer–resource interactions is one of the main limitations in the construction of food webs. DNA barcoding of prey items in predator guts provides a valuable tool for characterizing trophic interactions, but the method relies on the availability of reference sequences to which prey sequences can be matched. In this study, we demonstrate that the COI sequence library of the Moorea BIOCODE project, an ecosystem-level barcode initiative, enables the identification of a large proportion of semi-digested fish, crustacean and mollusks found in the guts of three Hawkfish and two Squirrelfish species. While most prey remains lacked diagnostic morphological characters, 94% of the prey found in 67 fishes had >98% sequence similarity with BIOCODE reference sequences. Using this species-level prey identification, we demonstrate how DNA barcoding can provide insights into resource partitioning, predator feeding behaviors and the consequences of predation on ecosystem function.


Trophic interactions Diet analysis Food web DNA identification Hawkfish Squirrelfish 



We thank the BIOCODE teams who collected marine invertebrates and fish specimen in 2006, the “Centre de Recherche Insulaire et Observatoire de l’Environnement (CRIOBE) de Moorea”, the Richard B. Gump field station in Moorea for logistical support and three anonymous reviewers for helpful comments on the manuscript. We also greatly acknowledge the Gordon and Betty Moore Foundation, Smithsonian Institution Fellowship Program and France American Cultural Exchange program (FACE—Partner University Fund) for financial support.


  1. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Arias-Gonzalez JE, Hertel O, Galzin R (1998) Fonctionnement trophique d’un écosystème récifal en Polynésie française. Cybium 22:1–24Google Scholar
  3. Arias-Gonzalez JE, Galzin R, Harmelin-Vivien M (2004) Spatial, ontogenetic, and temporal variation in the feeding habits of the squirrelfish Sargocentron microstoma on reefs in Moorea, French Polynesia. Bull Mar Sci 75:473–480Google Scholar
  4. Blankenship LE, Yayanos AA (2005) Universal primers and PCR of gut contents to study marine invertebrate diets. Mol Ecol 14:891–899PubMedCrossRefGoogle Scholar
  5. Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:2717–2727CrossRefGoogle Scholar
  6. Deagle BE, Kirkwood R, Jarman SN (2009) Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol Ecol 18:2022–2038PubMedCrossRefGoogle Scholar
  7. Dunn MR, Szabo A, McVeagh MS, Smith PJ (2010) The diet of deepwater sharks and the benefits of using DNA identification of prey. Deep-Sea Res Part I 57:923–930CrossRefGoogle Scholar
  8. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  9. Glynn PW (1983) Increased survivorship in corals harboring crustacean symbionts. Mar Biol Lett 4:105–111Google Scholar
  10. Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc London Ser B-Biol Sci 270:313–321CrossRefGoogle Scholar
  11. Heinlein JM, Stier AC, Steele MA (2010) Predators reduce abundance and species richness of coral reef fish recruits via non-selective predation. Coral Reefs 29:527–532CrossRefGoogle Scholar
  12. Holbrook SJ, Brooks AJ, Schmitt RJ, Stewart HL (2008) Effects of sheltering fish on growth of their host corals. Mar Biol 155:521–530CrossRefGoogle Scholar
  13. Jarman SN, Deagle BE, Gales NJ (2004) Group-specific polymerase chain reaction for DNA-based analysis of species diversity and identity in dietary samples. Mol Ecol 13:1313–1322PubMedCrossRefGoogle Scholar
  14. Jones GP (1991) Postrecruitment processes in the ecology of coral reef fish populations: a multifactorial perspective. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, New York, pp 294–328Google Scholar
  15. Kane C, Brooks A, Holbrook S, Schmitt R (2009) The role of microhabitat preference and social organization in determining the spatial distribution of a coral reef fish. Environ Biol Fish 84:1–10CrossRefGoogle Scholar
  16. King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963PubMedCrossRefGoogle Scholar
  17. Longenecker K (2007) Devil in the details: high-resolution dietary analysis contradicts a basic assumption of reef-fish diversity models. Copeia 3:543–555CrossRefGoogle Scholar
  18. Machida RJ, Hashiguchi Y, Nishida M, Nishida S (2009) Zooplankton diversity analysis through single-gene sequencing of a community sample. BMC Genomics 10:438. doi: 10.1186/1471-2164-10-438 PubMedCrossRefGoogle Scholar
  19. Merfield CN, Wratten SD, Navntoft S (2004) Video analysis of predation by polyphagous invertebrate predators in the laboratory and field. Biol Control 29:5–13CrossRefGoogle Scholar
  20. Plaisance L, Knowlton N, Paulay G, Meyer C (2009) Reef-associated crustacean fauna: biodiversity estimates using semi-quantitative sampling and DNA barcoding. Coral Reefs 28:977–986CrossRefGoogle Scholar
  21. Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. Bioscience 46:609–620CrossRefGoogle Scholar
  22. Randall J (2005) Reef and shore fishes of the South Pacific. University of Hawaii Press, HonoluluGoogle Scholar
  23. Stewart HL, Holbrook SJ, Schmitt RJ, Brooks AJ (2006) Symbiotic crabs maintain coral health by clearing sediments. Coral Reefs 25:609–615CrossRefGoogle Scholar
  24. Stier AC, McKeon CS, Osenberg CW, Shima JS (2010) Guard crabs alleviate deleterious effects of vermetid snails on a branching coral. Coral Reefs 29:1019–1022CrossRefGoogle Scholar
  25. Zaidi RH, Jaal Z, Hawkes NJ, Hemingway J, Symondson WOC (1999) Can multiple-copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators? Mol Ecol 8:2081–2087PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Leray
    • 1
    • 4
  • J. T. Boehm
    • 2
    • 3
  • S. C. Mills
    • 1
  • C. P. Meyer
    • 4
  1. 1.Laboratoire d’Excellence “Corail” USR 3278 CNRS EPHE, CRIOBE-CBETMUniversité de PerpignanPerpignan CedexFrance
  2. 2.Biology DepartmentQueens College, City University of New YorkFlushingUSA
  3. 3.The Graduate CenterCity University of New YorkNew YorkUSA
  4. 4.Department of Invertebrate ZoologyNational Museum of Natural History, Smithsonian InstitutionWashingtonUSA

Personalised recommendations