Coral Reefs

, 30:1089 | Cite as

Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef

  • O. Nir
  • D. F. Gruber
  • S. Einbinder
  • S. Kark
  • D. Tchernov
Report

Abstract

The algae living endosymbiotically within coral are thought to increase algal pigmentation with increasing depth to capture the diminishing light. Here, we follow distribution of the hermatypic coral Seriatopora hystrix along a 60-m bathymetric gradient in the Gulf of Eilat, Red Sea, to study coral ecophysiology and response to light regimes. Combining work on coral morphology, pigment content and genotyping of the photosymbiont, we found that total chlorophyll concentration per zooxanthellae cell and the dark- and light-acclimated quantum yield of photosystem II did not vary significantly along the 60-m gradient. However, the chlorophyll a/c ratio increased with depth. This suggests that the symbiotic algae in S. hystrix possess a mechanism for acclimatization or adaptation that differs from previously described pathways. The accepted photoacclimatory process involves an increase in chlorophyll content per alga as light intensity decreases. Based on corallite and branch morphology, this research suggests that S. hystrix has two depth-dependent ecophenotypes. Above 10 m depth, S. hystrix exhibits sturdier colony configurations with thick branches, while below 30 m depth, colonies are characterized by thin branches and the presence of a larger polyp area. Between 10 and 30 m depth, both ecophenotypes are present, suggesting that corallite morphology may act as another axis of photoacclimation with depth.

Keywords

Scleractinian coral Symbiodinium sp. Deep reef Morphology Photosynthesis Seriatopora hystrix Chlorophyll a/c ratio 

Supplementary material

338_2011_801_MOESM1_ESM.eps (2.2 mb)
Supplementary data Fig. 1. Density of colonies at the Dekel site (gray) and in the KATZA oil terminal reef (black). Density was surveyed along all bathymetric distributions of the species at each site. Mean and confidence intervals of 95% are presented. Dotted line indicates average photosynthetically active radiation during 2005. n = 501 colonies (EPS 2281 kb)
338_2011_801_MOESM2_ESM.doc (31 kb)
Supplementary material 2 (DOC 31 kb)

References

  1. Al-Moghrabi S, Allemand D, Jaubert J (1993) Valine uptake by the scleractinian coral Galaxea fascicularis: characterisation and effect of light and nutritional status. J Comp Physiol B 163:355–362CrossRefGoogle Scholar
  2. Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253PubMedCrossRefGoogle Scholar
  3. Anthony KRN, Hoegh-Guldberg O (2003) Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys? Funct Ecol 17:246–259CrossRefGoogle Scholar
  4. Bak RPM, Meesters EH (1998) Coral population structure: the hidden information of colony size-frequency distributions. Mar Ecol Prog Ser 162:301–306CrossRefGoogle Scholar
  5. Bongarets P, Riginos C, Ridgway T, Sampayo EM, Van Oppen MJH, Englebert N, Vermeulen F, Hoegh-Guldberg O (2010) Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PloS ONE 5:e10871CrossRefGoogle Scholar
  6. Bou-Abdallah F, Chasteen ND, Lesser MP (2006) Quenching of superoxide radicals by green fluorescent protein. Biochem Biophys Acta 1760:1690–1695PubMedGoogle Scholar
  7. Brown BE, Dunne RP, Goodson MS, Douglas AE (2000) Marine ecology—bleaching patterns in reef corals. Nature 404:142–143PubMedCrossRefGoogle Scholar
  8. Bruno JF, Edmunds PJ (1997) Clonal variation for phenotypic plasticity in the coral Madracis mirabilis. Ecology 78:2177–2190Google Scholar
  9. Coleman AW, Suarez A, Goff LJ (1994) Molecular delineation of species and syngens in Volvocacean Green-Algae (Chlorophyta). J Phycol 30:80–90CrossRefGoogle Scholar
  10. Cosgrove J, Borowitzka MA (2011) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prasil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: Methods and applications. Springer, London, pp 1–18Google Scholar
  11. Dai CF (1989) Scleractinia of Taiwan 1. Families astroceniidae and pocilloporidae. Acta Oceanogr Taiwanica 22:83–101Google Scholar
  12. Dana JD (1846) Zoophytes. US Exploratory Expeditions 1836–1842. 7:1–740Google Scholar
  13. Darwin C (1842) The structure and distribution of coral reefs. Stewart and Murray, LondonGoogle Scholar
  14. Dodge RE, Aller RC, Thomson J (1974) Coral growth related to resuspension of bottom sediments. Nature 247:574–576CrossRefGoogle Scholar
  15. Dojiri M (1988) Isomolgus-desmotes, new genus, new species (Lichomolgidae), A Gallicolous Poecilostome copepod from the scleractinian coral Seriatopora-Hystrix Dana in Indonesia, with a review of gall-inhabiting Crustaceans of Anthozoans. Journal of Crustacean Biology 8:99–109CrossRefGoogle Scholar
  16. Dove SG, Hoegh-Guldberg O, Ranganathan S (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19:197–204CrossRefGoogle Scholar
  17. Dove SG, Lovell C, Fine M, Deckenback J, Hoegh-Guldberg O, Iglesias-Prieto R, Anthony KRN (2008) Host pigments: potential facilitators of photosynthesis in coral symbioses. Plant Cell Environ 31:1523–1533PubMedCrossRefGoogle Scholar
  18. Dubinsky Z, Falkowski PG, Porter JW, Muscatine L (1984) Absorption and utilization of radiant energy by light-adapted and shade-adapted colonies of the hermatypic coral Stylophora pistillata. Proc R Soc Lond B Bio 222:203–214CrossRefGoogle Scholar
  19. Dustan P (1975) Growth and form in the reef-building coral Montastrea annularis. Mar Biol 33:101–107CrossRefGoogle Scholar
  20. Dustan P (1982) Depth- dependent photoadaptation by zooxanthellae of the reef coral Montastrea annularis. Mar Biol 68:253–264CrossRefGoogle Scholar
  21. Edmunds JP (2005) The effect of sub-lethal increases in temperature on the growth and population trajectories of three scleractinian corals on the southern Great Barrier Reef. Oecologia 146:350–364PubMedCrossRefGoogle Scholar
  22. Einbinder S, Mass T, Brokovich E, Dubinsky Z, Erez J, Tchernov D (2009) Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar Ecol Prog Ser 381:167–174CrossRefGoogle Scholar
  23. Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032CrossRefGoogle Scholar
  24. Fabricius K, Genin A, Benayahu Y (1995) Flow-dependent herbivory and growth in zooxanthellae-free soft corals. Limnol Oceanogr 40:1290–1301CrossRefGoogle Scholar
  25. Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174CrossRefGoogle Scholar
  26. Falkowski PG, Laroche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8–14CrossRefGoogle Scholar
  27. Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, NJGoogle Scholar
  28. Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709CrossRefGoogle Scholar
  29. Falkowski PG, Jokiel PL, Kinzie RA III (1990) Irradiance and corals. Elsevier, AmsterdamGoogle Scholar
  30. Frade PR, Jongh FDA, Vermeulen F, Van Bleikswijk J, Bak RPM (2008) Variation in symbiont distribution between closely related coral species over large depth range. Mol Ecol 17:691–703PubMedCrossRefGoogle Scholar
  31. Franzisket L (1970) The atrophy of hermatipic reef corals maintained in darkness and their subsequent regeneration in light. Int Rev Gesamten Hydrobiol 55:1–12CrossRefGoogle Scholar
  32. Fricke HW (1996) Deep-water exploration of the Red Sea by submersible. Biosyst Ecol Ser 11:67–89Google Scholar
  33. Fricke HW, Schuhmacher H (1983) The depth limit of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). Mar Ecol 4:163–194CrossRefGoogle Scholar
  34. Gattuso JP, Gentili B, Duarte CM, Kleypas JA, Middelburg JJ, Antoine D (2006) Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences 3:489–513CrossRefGoogle Scholar
  35. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92Google Scholar
  36. Gleason DF, Wellington GM (1995) Variation in UVb sensitivity of planula larvae of the coral Agaricia agaricites along a depth gradient. Mar Biol 123:693–703CrossRefGoogle Scholar
  37. Gleason DF, Edmunds PJ, Gates RD (2006) Ultraviolet radiation effects on the behavior and recruitment of larvae from the reef coral Porites astreoides. Mar Biol 148:503–512CrossRefGoogle Scholar
  38. Graus RR, Macintyre IG (1976) Light control of growth form in colonial reef corals - computer-simulation. Science 193:895–897PubMedCrossRefGoogle Scholar
  39. Gruber DF, Kao H-T, Tsai J, Pieribone VA (2008) Patterns of fluorescent protein expression in scleractinian corals. Biol Bull 215:143–154PubMedCrossRefGoogle Scholar
  40. Helmuth BST, Sebens KP, Daniel TL (1997) Morphological variation in coral aggregations: Branch spacing and mass flux to coral tissues. J Exp Mar Biol Ecol 209:233–259CrossRefGoogle Scholar
  41. Hennige SJ, Suggett DJ, Warner ME, McDougall KE, Smith DJ (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195CrossRefGoogle Scholar
  42. Houlbreque F, Ferrier-Pages C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17PubMedCrossRefGoogle Scholar
  43. Huston MA (1985) Patterns of species diversity on coral reefs. Annu Rev Ecol Syst 16:149–177CrossRefGoogle Scholar
  44. Iglesias-Prieto R, Trench RK (1997) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. II. Response of chlorophyll-protein complexes to different photon-flux densities. Mar Biol 130:23–33CrossRefGoogle Scholar
  45. Iglesias-Prieto R, Govind NS, Trench RK (1993) Isolation and characterization of 3 membrane-bound chlorophyll-protein complexes from 4 dinoflagellate species. Philos Trans R Soc Lond B Biol Sci 340:381–392CrossRefGoogle Scholar
  46. Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond, B 271:1757–1763CrossRefGoogle Scholar
  47. Janssen J, Rhiel E (2008) Evidence of monomeric photosystem I complexes and phosphorylation of chlorophyll a/c-binding polypeptides in “Chroomonas” sp. strain LT (Cryptophyceae). Int Microbiol 11:171–178PubMedGoogle Scholar
  48. Jeffrey SW, Humphrey GF (1975) New spectrometric equation for determining chlorophyll a, b and c2 on higher plants, algae, and natural phytoplankton. Biochem Physiol Aflanz 167:191–194Google Scholar
  49. Jerlov NG (1968) Optical oceanography. Elsevier, AmsterdamGoogle Scholar
  50. Jones JR, Hoegh-Guldberg O (2001) Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant Cell Environ 24:89–99CrossRefGoogle Scholar
  51. Kinzie RA, Jokiel PL, York R (1984) Effects of light of altered spectral composition on coral zooxanthellae associations and on zooxanthellae in vitro. Mar Biol 78:239–248CrossRefGoogle Scholar
  52. Klaus JS, Budd AF, Heikoop JM, Fouke BW (2007) Environmental controls on corallite morphology in the reef coral Montastrea annularis. Bull Mar Sci 80:233–260Google Scholar
  53. Koehl MAR, Hadfield MG (2004) Soluble settlement cue in slowly moving water within coral reeds induces adhesion to surfaces. J Mar Syst 49:75–88CrossRefGoogle Scholar
  54. Kraus GH, Weis H (1991) Chlorophyll fluorescence: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349CrossRefGoogle Scholar
  55. Kuguru B, Chadwick NE, Santos SR, Beer S, Winters G (2007) Adaptation strategies of the corallimorpharian Rhodactis rhodostoma to irradiance and temperature. Mar Biol 151:1287–1298CrossRefGoogle Scholar
  56. LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: In search of a “species” level marker. J Phycol 37:866–880CrossRefGoogle Scholar
  57. LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054CrossRefGoogle Scholar
  58. Leong TY, Anderson JM (1984) Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. II. Regulation of electron transport capacities, electron carriers, coupling factor (CF1) activity and rates of photosynthesis. Photosynth Res 5:117–128CrossRefGoogle Scholar
  59. Lesser MP (1996) Acclimation of phytoplankton to UV-B radiation: Oxidative stress and photoinhibition of photosynthesis are not prevented by UV-absorbing compounds in the dinoflagellate Prorocentrum micans. Mar Ecol Prog Ser 132:287–297CrossRefGoogle Scholar
  60. Lesser MP (2004) Experimental biology of coral reef ecosystems. J Exp Mar Biol Ecol 300:217–252CrossRefGoogle Scholar
  61. Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003PubMedCrossRefGoogle Scholar
  62. Lewis JB (1974) Settlement behavior of planulae larvae of hermatypic coral Favia-fragum (Esper). J Exp Mar Biol Ecol 15:165–172CrossRefGoogle Scholar
  63. Loh WKW, Loi T, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo- West Pacific. Mar Ecol Prog Ser 222:97–107CrossRefGoogle Scholar
  64. Loya Y (1972) Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar Biol 13:100–123CrossRefGoogle Scholar
  65. Maier E, Tollrian R, Rinkevich B, Nurnberger B (2005) Isolation by distance in the scleractinian coral Seriatopora hystrix from the Red Sea. Mar Biol 147:1109–1120CrossRefGoogle Scholar
  66. Maragos JE, Jokiel PL (1986) Reef corals of Johnston Atoll - One of the worlds most isolated reefs. Coral Reefs 4:141–150CrossRefGoogle Scholar
  67. Marshall PA (2000) Skeletal damage in reef corals: relating resistance to colony morphology. Mar Ecol Prog Ser 200:177–189CrossRefGoogle Scholar
  68. Mass T, Genin A (2008) Environmental versus intrinsic determination of colony symmetry in the coral Pocillopora verrucosa. Mar Ecol Prog Ser 369:131–137CrossRefGoogle Scholar
  69. Mass T, Einbinder S, Brokovich E, Shahar N, Vago R, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102CrossRefGoogle Scholar
  70. Masuda K, Goto M, Maruyama T, Miyachi S (1993) Adaptation of solitary corals and their zooxanthellae to low-light and Uv-radiation. Mar Biol 117:685–691CrossRefGoogle Scholar
  71. Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058:87–106CrossRefGoogle Scholar
  72. Melis A, Harvey GW (1981) Regulation of photosystem stoichiometry, chlorophyll a and chlorophyll b content and relation to chloroplast ultrastructure. Bioenergetics 637(1):138–145CrossRefGoogle Scholar
  73. Muko S, Kawasaki K, Sakai K, Takasu F, Shigesada N (2000) Morphological plasticity in the coral Porites sillimaniani and its adaptive significance. Bull Mar Sci 66:225–239Google Scholar
  74. Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition. 1. Delta-C-13 of zooxanthellae and animal tissue vs depth. Mar Biol 100:185–193CrossRefGoogle Scholar
  75. Palardy JE, Grottoli AG, Matthews KA (2006) Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. J Exp Mar Biol Ecol 331:99–107CrossRefGoogle Scholar
  76. Palmer CV, Modi CK, Mydlarz LD (2009) Coral fluorescent proteins as antioxidants. PLoS One 4:e7298PubMedCrossRefGoogle Scholar
  77. Porter JW (1976) Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. Am Nat 110:731–742CrossRefGoogle Scholar
  78. Porter JW, Muscatine L, Dubinsky Z, Falkowski PG (1984) Primary production and photoadaptation in light-adapted and shade-adapted colonies of the symbiotic coral, Stylophora pistillata. P Roy Soc Lond B Bio 222:161–180CrossRefGoogle Scholar
  79. Prezelin BB (1987) Photosynthetic physiology of dinoflagellates. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell Scientific, Oxford, pp 174–223Google Scholar
  80. Rowan R (1998) Diversity and ecology of zooxanthellae on coral reefs. J Phycol 34:407–417CrossRefGoogle Scholar
  81. Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral algal symbiosis. Proc Natl Acad Sci USA 92:2850–2853PubMedCrossRefGoogle Scholar
  82. Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351PubMedCrossRefGoogle Scholar
  83. Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269PubMedCrossRefGoogle Scholar
  84. Sampayo ME, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mar Ecol 16:3721–3733Google Scholar
  85. Sampayo EM, Dove S, Lajeunesse TC (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 18:500–519PubMedCrossRefGoogle Scholar
  86. Sebens PK, Witting J, Helmuth B (1997) Effect of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelloti). J Exp Mar Biol Ecol 211:1–28CrossRefGoogle Scholar
  87. Shlesinger Y (1985) Reproduction and juvenile growth in stony corals. Ph.D. thesis, Department of Zoology, Tel-Aviv UniversityGoogle Scholar
  88. Smith DJ, Suggett DJ, Baker NR (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biol 11:1–11CrossRefGoogle Scholar
  89. Steen RG (1986) Evidence for heterotrophy by zooxanthellae in symbiosis with Aiptasia pulchella. Biol Bull 170:267–278CrossRefGoogle Scholar
  90. Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74CrossRefGoogle Scholar
  91. Storlazzi CD, Brown EK, Field ME, Rodgers K, Jokiel PL (2005) A model for wave control on coral breakage and species distribution in the Hawaiian Islands. Coral Reefs 24:43–55CrossRefGoogle Scholar
  92. Takahashi S, Milward SE, Yamori W, Evans JR, Hillier W, Badger MR (2010) The solar action spectrum of photosystem II damage. Plant Physiol 153:988–993PubMedCrossRefGoogle Scholar
  93. Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: Patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359PubMedCrossRefGoogle Scholar
  94. Tomascik T, Sander F (1985) Effects of eutrophication on reef-building corals.1. growth-rate of the reef-building coral Montastrea annularis. Mar Biol 87:143–155CrossRefGoogle Scholar
  95. Torre WR, Burkey KO (1990) Acclimation of barley to changes in light intensity: photosynthetic electron transport activity and components. Photosynth Res 24:127–136Google Scholar
  96. Venn AA, Wilson MA, Trapido-Rosenthal HG, Keely BJ, Douglas AE (2006) The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ 29:2133–2142PubMedCrossRefGoogle Scholar
  97. Vermeij MJA, Bak RPM (2002) How are coral populations structured by light? Marine light regimes and the distribution of Madracis. Mar Ecol Prog Ser 233:105–116CrossRefGoogle Scholar
  98. Vermeij MJA, Delvoye L, Nieuwland G, Bak RPM (2002) Patterns in fluorescence over a Caribbean reef slope: the coral genus Madracis. Photosynthetica 40:423–429CrossRefGoogle Scholar
  99. Wyman KD, Dubinsky Z, Porter JW, Falkowski PG (1987) Light-absorption and utilization among hermatypic corals - a study in Jamaica, West-Indies. Mar Biol 96:283–292CrossRefGoogle Scholar
  100. Yamazaki J (2010) Is light quality involved in the regulation of the photosynthetic apparatus in attached rice leaves? Photosynth Res 105:63–71PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • O. Nir
    • 1
    • 2
  • D. F. Gruber
    • 3
  • S. Einbinder
    • 1
    • 2
  • S. Kark
    • 2
  • D. Tchernov
    • 1
    • 2
  1. 1.Interuniversity Institute for Marine Sciences in EilatEilatIsrael
  2. 2.Department of Evolution, Systematics and EcologyHebrew University of JerusalemJerusalemIsrael
  3. 3.Department of Natural SciencesCity University of New York, Baruch CollegeNew YorkUSA

Personalised recommendations