Advertisement

Coral Reefs

, Volume 30, Issue 4, pp 967–973 | Cite as

Depth-related variation in epiphytic communities growing on the brown alga Lobophora variegata in a Caribbean coral reef

  • A. FrickeEmail author
  • T. V. Titlyanova
  • M. M. Nugues
  • K. Bischof
Report

Abstract

Lobophora variegata is a dominant macroalga on coral reefs across the Caribbean. Over the last two decades, it has expanded its vertical distribution to both shallow and deep reefs along the leeward coast of the island of Curaçao, Southern Caribbean. However, the ecological implications of this expansion and the role of L. variegata as a living substratum are poorly known. This study compared epiphytic algal communities on L. variegata blades along two depth transects (6–40 m). The epiphytic community was diverse with a total of 70 species of which 49 were found directly attached to L. variegata. The epiphytic community varied significantly between blade surface, depth and site. The greatest number of genera per blade was found growing on the underside of the blades regardless of site and depth. Filamentous red algae (e.g. Neosiphonia howei) were commonly found on the upperside of the blades over the whole depth gradient, whereas the underside was mainly colonized by calcifying (e.g. Hydrolithon spp., Jania spp., Amphiroa fragillissima), fleshy red algae (e.g. Champia spp., Gelidiopsis spp., Hypneaspinella) and foliose brown alga (e.g. Dictyota spp.). Anotrichum tenue, a red alga capable of overgrowing corals, was a common epiphyte of both blade surfaces. L. variegata plays an important role as a newly available substratum. Thus, its spread may influence other algal species and studies of benthic macroalgae such as L. variegata should also take into consideration their associated epiphytic algal communities.

Keywords

Deep coral reef Curaçao Macroalgae Phase shifts Turf algae Anotrichum tenue 

Notes

Acknowledgments

For kind assistance with diving and field work, we like to thank Svenja Beilfuss. For support and assistance with the microtome cutting procedure, we acknowledge the working group cell biology (Prof. Stick, University of Bremen), especially Ute Helmboldt-Cesar. We are grateful to the staff of the CARMABI foundation: Dr. Mark J. A. Vermeij, Dr. Adolphe Debrot, Carlos Winterdaal, Oscar Frans and Sislin Rosalia for friendly support. For statistical support, we thank Prof. Clarke. This study was supported by the Bremen International Graduate School for Marine Sciences (GLOMAR) that is funded by the German Research Foundation (DFG) within the frame of the Excellence Initiative by the German federal and state governments to promote science and research at German universities.

Supplementary material

338_2011_772_MOESM1_ESM.doc (344 kb)
Supplementary material 1 (DOC 343 kb)
338_2011_772_MOESM2_ESM.doc (352 kb)
Supplementary material 2 (DOC 352 kb)
338_2011_772_MOESM3_ESM.doc (176 kb)
Supplementary material 3 (DOC 176 kb)

References

  1. Amsler CD (2001) Induced defenses in macroalgae: The herbivore makes a difference. J Phycol 37:353–356CrossRefGoogle Scholar
  2. Arnold T, Tanner C, Hatch W (1995) Phenotypic variation in polyphenolic content of the tropical brown alga Lobophora variegata as a function of nitrogen availability. Mar Ecol Prog Ser 123:177–183CrossRefGoogle Scholar
  3. Ballantine DL (1979) The distribution of algal epiphytes on macrophyte hosts offshore from La Parguera, Puerto Rico. Bot Mar 22:107–110CrossRefGoogle Scholar
  4. Belegratis MR, Bitis I, Economou-Amilli A, Ott JA (1999) Epiphytic patterns of macroalgal assemblages on Cystoseira species (Fucales, Phaeophyta) in the east coast of Attica (Aegean Sea, Greece). Hydrobiologia 412:67–80CrossRefGoogle Scholar
  5. Birrell CL, McCook LJ, Willis BL, Harrington L (2008) Chemical effects of macroalgae on larval settlement of the broadcast spawning coral Acropora millepora. Mar Ecol Prog Ser 362:129–137CrossRefGoogle Scholar
  6. Borowitzka MA (1981) Algae and grazing in coral reef ecosystems. Endeavour 5:99–106CrossRefGoogle Scholar
  7. Box SJ, Mumby PJ (2007) Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar Ecol Prog Ser 342:139–149CrossRefGoogle Scholar
  8. Cambridge ML, Hocking PJ (1997) Annual primary production and nutrient dynamics of the seagrasses Posidonia sinuosa and Posidonia australis in south-western Australia. Aquat Bot 59:277–295CrossRefGoogle Scholar
  9. Cancino JM, Mufioz J, Mufioz M, Orellana MC (1987) Effects of the bryozoan Membranipora tuberculata (Bosc.) on the photosynthesis and growth of Gelidium rex Santelices et Abbott. J Exp Mar Biol Ecol 113:105–112CrossRefGoogle Scholar
  10. Cattaneo A (1983) Grazing on epiphytes. Limnol Oceanogr 28:124–132CrossRefGoogle Scholar
  11. Chung HY, Ma WCJ, Ang PO, Kim J-S, Chen F (2003) Seasonal variations of bromophenols in brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegata) collected in Hong Kong. J Agric Food Chem 51:2619–2624PubMedCrossRefGoogle Scholar
  12. Clarke KR, Gorley RN (2006) Primer v6 User Manual/Tutorial. PRIMER-E Ltd, PlymouthGoogle Scholar
  13. D’Antonio C (1985) Epiphytes on the rocky intertidal red alga Rhodomela larix (Turner) C. Agardh: Negative effects on the host and food for herbivores? J Exp Mar Biol Ecol 86:197–218CrossRefGoogle Scholar
  14. Foster NL, Box SJ, Mumby PJ (2008) Competitive effects of macroalgae on the fecundity of the reef-building coral Montastrea annularis. Mar Ecol Prog Ser 367:143–152CrossRefGoogle Scholar
  15. Franks A, Egan S, Holmstrom C, James S, Lappin-Scott H, Kjelleberg S (2006) Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization. Appl Environ Microbiol 72:6079–6087PubMedCrossRefGoogle Scholar
  16. Fricke A, Teichberg M, Beilfuss S, Bischof K (2011) Succession patterns in algal turf vegetation on a Caribbean coral reef. Bot Mar 54:111–126CrossRefGoogle Scholar
  17. Hanelt D, Roleda MY (2009) UVB radiation may ameliorate photoinhibition in specific shallow-water tropical marine macrophytes. Aquat Bot 91:6–12CrossRefGoogle Scholar
  18. Harrington L, Fabricius K, De’ath G, Negri A (2004) Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85:3428–3437CrossRefGoogle Scholar
  19. Holmstroem C, Kjelleberg S (1994) The effect of external biological factors on settlement of marine invertebrate and new antifouling technology. Biofouling 8:147–160CrossRefGoogle Scholar
  20. Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365PubMedCrossRefGoogle Scholar
  21. Jiang ZD, Jensen PR, Fenical W (1999) Lobophorins A and B, new antiinflammatory macrolides produced by a tropical marine bacterium. Bioorg Med Chem Lett 9:2003–2006PubMedCrossRefGoogle Scholar
  22. Jompa J, McCook LJ (2003) Contrasting effects of turf algae on corals: massive Porites spp. are unaffected by mixed-species turfs, but killed by the red alga Anotrichium tenue. Mar Ecol Prog Ser 258:79–86CrossRefGoogle Scholar
  23. Kendrick GA, Burt JS (1997) Seasonal changes in epiphytic macro-algae assemblages between offshore exposed and inshore protected Posidonia sinuosa Cambridge et Kuo Seagrass Meadows, Western Australia. Bot Mar 40:77–85CrossRefGoogle Scholar
  24. Kuffner IB, Paul VJ (2004) Effects of the benthic cyanobacterium Lyngbya majuscula on larval recruitment of the reef corals Acropora surculosa and Pocillopora damicornis. Coral Reefs 23:455–458CrossRefGoogle Scholar
  25. Lane AL, Kubanek J (2008) Secondary metabolite defenses against pathogens and biofoulers. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin Heidelberg, pp 229–243CrossRefGoogle Scholar
  26. Lewis SM, Norris JN, Searles RB (1987) The regulation of morphological plasticity in tropical reef algae by herbivory. Ecology 68:636–641CrossRefGoogle Scholar
  27. Littler MM, Littler DS (1980) The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am Nat 116:25–44CrossRefGoogle Scholar
  28. Littler MM, Littler DS (2000) Caribbean reef plants. OffShore Graphics Inc, Washington, D.CGoogle Scholar
  29. Littler MM, Littler DS, Brooks BL (2010) The effects of nitrogen and phosphorus enrichment on algal community development: Artificial mini-reefs on the Belize Barrier Reef sedimentary lagoon. Harmful Algae 9:255–263CrossRefGoogle Scholar
  30. Michael TS, Shin HW, Hanna R, Spafford DC (2008) A review of epiphyte community development: Surface interactions and settlement on seagrass. J Environ Biol 29:629–638PubMedGoogle Scholar
  31. Montañés M, Reyes J, Sanson M (2003) La comunidad de epífitos de Zonaria tournefortii en el norte de Tenerife (islas Canarias): análisis florístico y comentarios sobre su epifauna. Vieraea 31:121–132Google Scholar
  32. Morales-Ayala S, Viera-Rodriguez M (1989) Distribución de los epífitos en Cystoseira tamariscifolia (Hudson) Papenfuss (Fucales, Phaeophyta) en punta de Gáldar (Gran Canaria, Islas Canarias). Anales Jard Bot Madrid 46:107–113Google Scholar
  33. Mumby PJ, Foster NL, Fahy EAG (2005) Patch dynamics of coral reef macroalgae under chronic and acute disturbance. Coral Reefs 24:681–692CrossRefGoogle Scholar
  34. Mumby PJ, Hastings A, Edwards HJ (2007) Thresholds and the resilience of Caribbean coral reefs. Nature 450:98–101PubMedCrossRefGoogle Scholar
  35. Munoz J, Cancino JM, Molina MX (1991) Effect of encrusting bryozoans on the physiology of their algal substratum. J Mar Biol Assoc UK 71:877–882CrossRefGoogle Scholar
  36. Norton TA (1992) Dispersal by macroalgae. Brit Phycol J 27:293–301CrossRefGoogle Scholar
  37. Nugues MM, Bak RPM (2006) Differential competitive abilities between Caribbean coral species and a brown alga: a year of experiments and a long-term perspective. Mar Ecol Prog Ser 315:75–86CrossRefGoogle Scholar
  38. Nugues MM, Bak RPM (2008) Long-term dynamics of the brown macroalga Lobophora variegata on deep reefs in Curacao. Coral Reefs 27:389–393CrossRefGoogle Scholar
  39. Nugues MM, Szmant A (2006) Coral settlement onto Halimeda opuntia: a fatal attraction to an ephemeral substrate? Coral Reefs 25:585–591CrossRefGoogle Scholar
  40. Ogden JC, Lobel PS (1978) The role of herbivorous fishes and urchins in coral reef communities. Environ Biol Fish 3:49–63CrossRefGoogle Scholar
  41. Pavia H, Toth GB (2000) Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225Google Scholar
  42. Richardson LL, Kuta KG (2003) Ecological physiology of the black band disease cyanobacterium Phormidium corallyticum. FEMS Microbiol Ecol 43:287–298PubMedCrossRefGoogle Scholar
  43. Rohde S, Hiebenthal C, Wahl M, Karez R, Bischof K (2008) Decreased depth distribution of Fucus vesiculosus (Phaeophyceae) in the Western Baltic: effects of light deficiency and epibionts on growth and photosynthesis. Eur J Phycol 43:143–150CrossRefGoogle Scholar
  44. Round FE (1981) The ecology of algae. University Press, CambridgeGoogle Scholar
  45. Sand-Jensen K (1990) Epiphyte shading: its role in resulting depth distribution of submerged aquatic macrophytes. Folia Geobot Phytoxt 25:315–320Google Scholar
  46. Sotka EE, Taylor RB, Hay ME (2002) Tissue specific induction of resistance to herbivores in a brown alga: the importance of direct grazing versus waterborne signals from grazed neighbors. J Exp Mar Biol Ecol 277:1–12CrossRefGoogle Scholar
  47. Stachowicz JJ, Hay ME (1999) Mutualism and coral persistence: the role of herbivore resistance to algal chemical defense. Ecology 80:2085–2101CrossRefGoogle Scholar
  48. Stern JL, Hagerman AE, Steinberg PD, Mason PK (1996) Phlorotannin-protein interactions. J Chem Ecol 22:1877–1899CrossRefGoogle Scholar
  49. Taylor WR (1960) Marine algae of the eastern tropical and subtropical coasts of the Americas. Univ. Michigan Press, Ann Arbor, MIGoogle Scholar
  50. Taylor RB, Sotka E, Hay ME (2002) Tissue-specific induction of herbivore resistance: seaweed response to amphipod grazing. Oecologia 132:68–76CrossRefGoogle Scholar
  51. Titlyanov EA, Yakovleva IM, Titlyanova TV (2007) Interaction between benthic algae (Lyngbya bouillonii, Dictyota dichotoma) and scleractinian coral Porites lutea in direct contact. J Exp Mar Biol Ecol 342:282–291CrossRefGoogle Scholar
  52. Tobler F (1906) Zur Biologie der Epiphyten im Meere. Deutsche Botanische Gesellschaft 24:552Google Scholar
  53. Van den Hoek C (1978) Marine algae from the coral reef of Curaçao, Netherlands Antilles. I. Three new and one rarely observed species from the steep fore-reef slope. Aquat Bot 5:47–61CrossRefGoogle Scholar
  54. Van den Hoek C, Colijn F, Cortel-Breeman AM, Wanders JBW (1972) Algal vegetation-types along the shores of inner bays and lagoons of Curaçao and of the lagoon Lac (Bonaire), Netherlands Antilles. K Ned Akad Wet Verh Afd Natuurk D Tweed Reeks 61:1–72Google Scholar
  55. Van der Ben D (1971) Les épiphytes des feuilles de Posidonia oceanica Delile sur les côtes françaises de la Méditerranée. Mem Inst R Sci Nat Belg 168:1–101Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. Fricke
    • 1
    • 2
    Email author
  • T. V. Titlyanova
    • 3
  • M. M. Nugues
    • 1
    • 4
  • K. Bischof
    • 2
  1. 1.Coral Reef Ecology Group (CORE), Leibniz Center for Tropical Marine Ecology (ZMT)BremenGermany
  2. 2.Department of Marine BotanyUniversity of BremenBremenGermany
  3. 3.A. V. Zhirmunsky Institute of Marine BiologyFar Eastern Branch of the Russian Academy of SciencesVladivostokRussia
  4. 4.CARMABI FoundationWillemstad, CuraçaoNetherlands Antilles

Personalised recommendations