Coral Reefs

, 30:693 | Cite as

Taxonomy and life history of the Acropora-eating flatworm Amakusaplana acroporae nov. sp. (Polycladida: Prosthiostomidae)

  • K. A. Rawlinson
  • J. A. Gillis
  • R. E. BillingsJr.
  • E. H. Borneman
Report

Abstract

Efforts to culture and conserve acroporid corals in aquaria have led to the discovery of a corallivorous polyclad flatworm (known as AEFW – Acropora-eating flatworm), which, if not removed, can eat entire colonies. Live observations of the AEFW, whole mounts, serial histological sections and comparison of 28S rDNA sequences with other polyclads reveal that this is a new species belonging to the family Prosthiostomidae Lang, 1884 and previously monospecific genus Amakusaplana (Kato 1938). Amakusaplana acroporae is distinguished from Amakusaplana ohshimai by a different arrangement and number of eyes, a large seminal vesicle and dorsoventrally compressed shell gland pouch. Typical of the genus, A. acroporae, lacks a ventral sucker and has a small notch at the midline of the anterior margin. Nematocysts and a Symbiodinium sp. of dinoflagellate from the coral are abundantly distributed in the gut and parenchyma. Individual adults lay multiple egg batches on the coral skeleton, each egg batch has 20–26 egg capsules, and each capsule contains between 3–7 embryos. Embryonic development takes approximately 21 days, during which time characteristics of a pelagic life stage (lobes and ciliary tufts) develop but are lost before hatching. The hatchling is capable of swimming but settles to the benthos quickly, and no zooxanthellae were observed in the animal at this stage. We suggest that intracapsular metamorphosis limits the dispersal potential of hatchlings and promotes recruitment of offspring into the natal habitat. The evolutionary and ecological significance of retaining lobes and ciliary tufts in the embryo are discussed. Camouflage, high fecundity and possible dispersal dimorphisms probably explain how Amakusaplana acroporae can cause Acropora sp. mortality in aquaria where natural predators may be absent.

Keywords

Coral predator Acropora-eating flatworm Polyclad Amakusaplana acroporae Intracapsular larva 28S rDNA phylogeny 

References

  1. Baeza JA, Veliz D, Pardo LM, Lohrmann K, Guisado C (1997) A new polyclad flatworm, Tytthosoceros inca (Platyhelminthes: Polycladida: Cotylea: Pseudocerotidae) from Chilean coastal waters. Proc Biol Soc Wash 110:476–482Google Scholar
  2. Bock S (1922) Two new cotylean polyclads from Japan. Ark Zool 14:1–31Google Scholar
  3. Bock S (1923) Boninia, a new polyclad genus from the Pacific. Nov Act R Soc Sci Uppsala 6: 32 ppGoogle Scholar
  4. Bock S (1926) Eine Polyclade mit muskuloesen druesenorganen rings um dem koerper. Zool Anz 66:133–138Google Scholar
  5. Borneman EH, Lowrie J (2001) Advances in captive husbandry and propagation: an easily utilized reef replenishment means from the private sector? Bull Mar Sci 69(2):897–913Google Scholar
  6. Carlson BA (1999) Organism responses to rapid change: what aquaria can tell us about nature. Am Zool 39:44–55CrossRefGoogle Scholar
  7. Crozier WJ (1917) On the pigmentation of a Polyclad. Proc Am Acad Arts Sci 50:725–730CrossRefGoogle Scholar
  8. Faubel A (1984) The Polycladida, Turbellaria. Proposal and establishment of a new system. Part II. The Cotylea. Mitt Hamb Zool Mus Inst 81:189–259Google Scholar
  9. Galleni L, Tongiorgi P, Ferrero E, Salghetti U (1980) Stylochus mediterraneus (Turbellaria: Polycladida), predator of the mussel, Mytilus galloprovincialis. Mar Biol 55:317–326CrossRefGoogle Scholar
  10. Holleman JJ (1998) Two new species of the genus Anonymus from New Zealand (Polycladida, Cotylea). Hydrobiologia 383:61–67CrossRefGoogle Scholar
  11. Hyman LH (1959) A further study of Micronesian polyclad flatworms. Proc US Natl Mus 108:543–597CrossRefGoogle Scholar
  12. IUCN (2010) IUCN Red List of Threatened Species. Version 2010.4Google Scholar
  13. Jokiel PL, Townsley SJ (1974) Biology of the polyclad Prosthiostomum (Prosthiostomum) sp., a new coral parasite from Hawaii. Pac Sci 28:361–373Google Scholar
  14. Karling TG (1966) On nematocysts and similar structures in turbellarians. Acta Zool Fenn 116:1–28Google Scholar
  15. Kato K (1938) Polyclads from Amakusa, Southern Japan. Jpn J Zool 7:559–576Google Scholar
  16. Kato K (1940) On the development of some Japanese polyclads. Jpn J Zool 8:537–573Google Scholar
  17. Kawaguti S (1944) Zooxanthellae as a factor of positive phototropism in those animals containing them. Palao Trop Biol Stn Stud 2:681–682Google Scholar
  18. Krug PJ (2009) Not my “type”: larval dispersal dimorphisms and bet-hedging in Opisthobranch life histories. Biol Bull 216:355–372CrossRefPubMedGoogle Scholar
  19. Lang A (1884) Die Polycladen (Seeplanarien) des Golfes von Neapel und der angrenzenden Meeresabschnitte. Fauna und Flora des Golfes von Neapel Monogr 11:688 ppGoogle Scholar
  20. Littlewood DTJ, Marsbe LA (1990) Predation on cultivated oysters, Crassostrea rhizophorae (Guilding), by the polyclad turbellarian flatworm, Stylochus (Stylochus) frontalis Verrill. Aquaculture 88:145–150CrossRefGoogle Scholar
  21. Littlewood DT, Curini-Galletti M, Herniou EA (2000) The interrelationships of proseriata (Platyhelminthes: seriata) tested with molecules and morphology. Mol Phylogenet Evol 16:449–466CrossRefPubMedGoogle Scholar
  22. Litvaitis MK, Bolanos DM, Quiroga SY (2010) When names are wrong and colours deceive: unravelling the Pseudoceros bicolor species complex (Platyhelminthes: Polycladida). J Nat Hist 44:829–845CrossRefGoogle Scholar
  23. Millar RH (1971) The biology of ascidians. In: Russell FS, Yonge M (eds) Advances in marine biology, 9. Academic Press, New York, pp 1–100Google Scholar
  24. Murina G-V, Grintsov V, Solonchenko A (1995) Stylochus tauricus, a predator of the barnacle Balanus improvisus in the Black Sea. Hydrobiologia 305:101–104CrossRefGoogle Scholar
  25. Newman LJ, Cannon LRG (1994) Pseudoceros and Pseudobiceros (Platyhelminthes, Polycladida, Pseudocerotidae) from eastern Australia and Papua New Guinea. Mem Qld Mus 37:205–266Google Scholar
  26. Newman LJ, Norenburg JL, Reed S (2000) Taxonomic and biological observations on the tiger flatworm, Maritigrella crozieri (Hyman, 1939), new combination (Platyhelminthes, Polycladida, Euryleptidae) from Florida waters. J Nat Hist 34:799–808CrossRefGoogle Scholar
  27. Nosratpour F (2008) Observations of a polyclad flatworm affecting acroporid corals in captivity. In: Leewis RJ, Janse M (eds) Advances in coral husbandry in public aquariums. Public Husbandry Series 2:37–46Google Scholar
  28. Pearse AS, Wharton GW (1938) The oyster “leech” Stylochus inimicus Palombi, associated with oysters on the coasts of Florida. EcoI Monogr 8:605–655CrossRefGoogle Scholar
  29. Perez-Portela R, Turon X (2007) Prey preferences of the polyclad flatworm Prostheceraeus roseus among Mediterranean species of the ascidian genus Pycnoclavella. Hydrobiologia 592:535–539CrossRefGoogle Scholar
  30. Posada D (2006) ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res 34:W700–W703CrossRefPubMedPubMedCentralGoogle Scholar
  31. Poulter JL (1975) Hawaiian polyclads: Prosthiostomids I. Pac Sci 29:317–339Google Scholar
  32. Prudhoe S (1985) A monograph on Polyclad Turbellaria. Oxford University Press, London, p 259Google Scholar
  33. Rawlinson KA (2010) Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits. Front Zool 7:12CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rawlinson KA, Litvaitis MK (2008) Cotylea (Platyhelminthes, Polycladida): a cladistic analysis of morphology. Invertebr Biol 127:121–138CrossRefGoogle Scholar
  35. Ritson-Williams R, Yotsu-Yamashita M, Paul VJ (2006) Ecological functions of tetrodotoxin in a deadly polyclad flatworm. Proc Natl Acad Sci USA 103:3176–3179CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  37. Smith NF, Johnson KB, Young C (2002) Phylum platyhelminthes. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic Press, San Diego, pp 123–148Google Scholar
  38. Sonnenberg R, Nolte AW, Tautz D (2007) An evaluation of LSU D1–D2 sequences for their use in species identification. Front Zool 4:6CrossRefPubMedPubMedCentralGoogle Scholar
  39. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and Other Methods). Version 4.10b. Sinauer Associates, Sunderland, MAGoogle Scholar
  40. Teshirogi W, Ishida S, Jatani K (1981) On the early development of some Japanese polyclads. Rep Fukara Mar Biol Lab 9:2–31Google Scholar
  41. Yates KR, Carlson BA (1993) Corals in aquarium: How to use selective collecting and innovative husbandry to promote reef conservation. Proc 7th Int Coral Reef Symp 2: 1091–1095Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • K. A. Rawlinson
    • 1
    • 2
  • J. A. Gillis
    • 3
  • R. E. BillingsJr.
    • 4
  • E. H. Borneman
    • 5
  1. 1.Smithsonian Marine StationFort PierceUSA
  2. 2.Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
  3. 3.Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
  4. 4.BristowUSA
  5. 5.Department of BiologyUniversity of HoustonHoustonUSA

Personalised recommendations