Coral Reefs

, Volume 29, Issue 4, pp 989–1003 | Cite as

Local endemicity and high diversity characterise high-latitude coral–Symbiodinium partnerships

  • L. C. Wicks
  • E. Sampayo
  • J. P. A. Gardner
  • S. K. Davy
Report

Abstract

Obligate symbiotic dinoflagellates (Symbiodinium) residing within the tissues of most reef invertebrates are important in determining the tolerance range of their host. Coral communities living at high latitudes experience wide fluctuations in environmental conditions and thus provide an ideal system to gain insights into the range within which the symbiotic relationship can be sustained. Further, understanding whether and how symbiont communities associated with high-latitude coral reefs are different from their tropical counterparts will provide clues to the potential of corals to cope with marginal or changing conditions. However, little is known of the host and symbiont partnerships at high latitudes. Symbiodinium diversity and specificity of high-latitude coral communities were explored using denaturing gradient gel electrophoresis (PCR-DGGE) analysis of the internal transcribed spacer regions (ITS1 and ITS2) of the ribosomal DNA at Lord Howe Island (31°S; Australia), and the Kermadec Islands (29°S; New Zealand). All but one host associated with clade C Symbiodinium, the exception being a soft coral (Capnella sp.) that contained Symbiodinium B1. Besides ‘host-generalist’ Symbiodinium types C1 and C3, approximately 72% of the Symbiodinium identified were novel C types, and zonation of symbionts in relation to environmental parameters such as depth and turbidity was evident in certain host species. The high-latitude Symbiodinium communities showed little overlap and relatively high diversity compared with communities sampled on the tropical Great Barrier Reef. Although host specificity was maintained in certain species, others shared symbionts and this potential reduction of fidelity at high-latitude locations may be the result of locally challenging and highly variable environmental conditions.

Keywords

Symbiodinium Lord Howe Island Coral Marginal High-latitude 

Notes

Acknowledgments

The authors thank Prof. O. Hoegh-Guldberg (CMS, UQ) for providing laboratory facilities and equipment; NSW Marine Parks Authority for permits; Victoria University of Wellington for financial support; Brian Busteed, Dan Logan, Carden Wallace, Peter Harrison, Ian Kerr and Sallyann Gudge for their assistance in the field, and two anonymous reviewers for their helpful comments. A Commonwealth PhD Scholarship supported L.C.W.

Supplementary material

338_2010_649_MOESM1_ESM.doc (3.7 mb)
Supplementary material 1 (DOC 3807 kb)

References

  1. Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc Lond B Biol Sci 275:2273–2282CrossRefGoogle Scholar
  2. Ayre DJ, Hughes TP (2004) Climate change, genotypic diversity and gene flow in reef-building corals. Ecol Lett 7:273–278CrossRefGoogle Scholar
  3. Baker AC (2001) Reef corals bleach to survive change. Nature 411:765–766CrossRefPubMedGoogle Scholar
  4. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Syst 34:661–669CrossRefGoogle Scholar
  5. Baker AC, Rowan R (1997) Diversity of symbiotic dinoflagellates (zooxanthellae) in scleractinian corals of the Caribbean and Eastern Pacific. Proc 8th Int Coral Reef Symp: 1301–1306Google Scholar
  6. Barneah O, Weis VM, Perez ST, Benayahu Y (2004) Diversity of dinoflagellate symbionts in Red Sea soft corals: mode of symbiont acquisition matters. Mar Ecol Prog Ser 275:89–95CrossRefGoogle Scholar
  7. Berkelmans R, Van Oppen M (2006) The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc Lond B Biol Sci 273:2305–2312CrossRefGoogle Scholar
  8. Brook FJ (1999) The coastal scleractinian corals of the Kermadec Islands, southwestern Pacific Ocean. J R Soc N Z 29:435–460Google Scholar
  9. Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism: a testable hypothesis. Bioscience 43:320–326CrossRefGoogle Scholar
  10. Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–219CrossRefGoogle Scholar
  11. Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial, PlymouthGoogle Scholar
  12. Clement M, Posada D, Crandall KA (2001) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  13. Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34CrossRefPubMedGoogle Scholar
  14. Crossland CJ (1988) Latitudinal comparisons of coral reef structure and function. Proc 6th Intl Coral Reef Symp: 221–226Google Scholar
  15. Fitt WK, Cook C (2001) The effects of feeding or addition of dissolved inorganic nutrients in maintaining the symbiosis between dinoflagellates and a tropical marine cnidarian. Mar Biol 139:507–517CrossRefGoogle Scholar
  16. Frade PR, Englebert N, Faria J, Visser P, Bak R (2008a) Distribution and photobiology of Symbiodinium types in different light environments for three colour morphs of the coral Madracis pharensis: is there more to it than total irradiance? Coral Reefs 27:913–925CrossRefGoogle Scholar
  17. Frade PR, De Jongh F, Vermeulen F, Van Bleijswijk J, Bak RPM (2008b) Variation in symbiont distribution between closely related coral species over large depth ranges. Mol Ecol 17:691–703CrossRefPubMedGoogle Scholar
  18. Francis MP, Grace RV, Paulin CD (1987) Coastal fishes of the Kermadec Islands. N Z J Mar Freshw Res 21:1–13CrossRefGoogle Scholar
  19. Goulet TL, LaJeunesse TC, Fabricius KE (2008) Symbiont specificity and bleaching susceptibility among soft corals in the 1998 Great Barrier Reef mass coral bleaching event. Mar Biol 154:795–804CrossRefGoogle Scholar
  20. Harriott VJ, Banks SA (2002) Latitudinal variation in coral communities in eastern Australia: a qualitative biophysical model of factors regulating coral reefs. Coral Reefs 21:83–94Google Scholar
  21. Harriott VJ, Harrison PL, Banks SA (1995) The coral communities of Lord Howe Island. Mar Freshw Res 46:457–465CrossRefGoogle Scholar
  22. Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world, Vol 25, Coral reef ecosystems. Elsevier, Amsterdam, pp 133–207Google Scholar
  23. Hoegh-Guldberg O, Fine M, Skirving W, Johnstone R, Dove S, Strong A (2005) Coral bleaching following wintry weather. Limnol Oceanogr 50:265–271CrossRefGoogle Scholar
  24. Iglesias-Prieto R, Trench RK (1997) Photoadaptation, photoacclimation and niche diversification in invertebrate-dinoflagellate symbioses. Proc 8th Int Coral Reef Symp: 1319–1324Google Scholar
  25. Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond B Biol Sci 271:1757–1763CrossRefGoogle Scholar
  26. Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159Google Scholar
  27. LaJeunesse TC (2001) Investigating the biodiversity, ecology and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a ‘species’ level marker. J Phycol 37:866–880CrossRefGoogle Scholar
  28. LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  29. LaJeunesse TC (2005) ‘‘Species’’ radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:348–359Google Scholar
  30. LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134CrossRefPubMedGoogle Scholar
  31. LaJeunesse TC, Loh W, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–5054CrossRefGoogle Scholar
  32. LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW (2004a) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23:296–603Google Scholar
  33. LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done TJ, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004b) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161CrossRefGoogle Scholar
  34. LaJeunesse TC, Reyes-Bonilla H, Warner ME, Wills M, Schmidt GW, Fitt WK (2008) Specificity and stability in high-latitude eastern Pacific coral–algal symbioses. Limnol Oceanogr 53:719–727Google Scholar
  35. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24CrossRefGoogle Scholar
  36. Loh W, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar Ecol Prog Ser 222:97–107CrossRefGoogle Scholar
  37. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297CrossRefGoogle Scholar
  38. Muller-Parker G, Pierce-Cravens J, Bingham BL (2007) Broad thermal tolerance of the symbiotic dinoflagellate Symbiodinium muscatinei (Dinophyta) in the sea anemone Anthopleura elegantissima (Cnidaria) from northern latitudes. J Phycol 43(1):25–31CrossRefGoogle Scholar
  39. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol. doi: 10.1016/j.ympev.2010.03.040
  40. Richmond RH, Hunter CL (1990) Reproduction and recruitment of corals: comparisons among the Caribbean, the Tropical Pacific, and the Red Sea. Mar Ecol Prog Ser 60:185–203CrossRefGoogle Scholar
  41. Rodriguez-Lanetty M, Loh W, Carter D, Hoegh-Guldberg O (2001) Latitudinal variability in symbiont specificity within the widespread scleractinian coral Plesiastrea versipora. Mar Biol 138:1175–1181CrossRefGoogle Scholar
  42. Rodriguez-Lanetty M, Chang S-J, Song J-I (2003) Specificity of two temperate dinoflagellate–anthozoan associations from the north-western Pacific Ocean. Mar Biol 143:1193–1199CrossRefGoogle Scholar
  43. Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742CrossRefPubMedGoogle Scholar
  44. Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci USA 92:2850–2853CrossRefPubMedGoogle Scholar
  45. Rowan R, Knowlton N, Baker AC, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269CrossRefPubMedGoogle Scholar
  46. Sampayo ES, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 16:3721–3733CrossRefPubMedGoogle Scholar
  47. Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA 105:10444–10449CrossRefPubMedGoogle Scholar
  48. Santos SR, Shearer TL, Hannes AR, Coffroth MA (2004) Fine-scale diversity and specificity in the most prevalent lineage of symbiotic dinoflagellates (Symbiodinium, Dinophyceae) of the Caribbean. Mol Ecol 13:459–469CrossRefPubMedGoogle Scholar
  49. Savage AM, Goodson MS, Visram S, Trapido-Rosenthal H, Wiedenmann J, Douglas AE (2002) Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: dinoflagellates of the genus Symbiodinium in corals and sea anemones. Mar Ecol Prog Ser 244:17–26CrossRefGoogle Scholar
  50. Saxby T, Dennison WC, Hoegh-Guldberg O (2003) Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Mar Ecol Prog Ser 248:85–97CrossRefGoogle Scholar
  51. Stat M, Loh W, Hoegh-Guldberg O, Carter DA (2009) Symbiont acquisition strategy drives host-symbiont associations in the southern Great Barrier Reef. Coral Reefs 28:709–713CrossRefGoogle Scholar
  52. Swofford DL (2001) PAUP. Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer & Associates, Sunderland, MAGoogle Scholar
  53. Tchernov D, Gorbunov MY, de Vargas C, Yadav SW, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535CrossRefPubMedGoogle Scholar
  54. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. 111. Cladogram estimation. Genetics 132:619–633PubMedGoogle Scholar
  55. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, HD G (1997) The CLUSTAL x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  56. Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722CrossRefGoogle Scholar
  57. Thornhill D, Kemp DW, Bruns BU, Fitt WK, Schmidt GW (2008) Correspondence between cold tolerance and temperate biogeography in a Western Atlantic Symbiodinium (Dinophyta) lineage. J Phycol 44:1126–1135CrossRefGoogle Scholar
  58. Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359CrossRefPubMedGoogle Scholar
  59. van Oppen MJH (2004) Mode of zooxanthella transmission does not affect zooxanthella diversity in acroporid corals. Mar Biol 144:1–7CrossRefGoogle Scholar
  60. Venn AA, Loram JE, Trapido-Rosenthal HG, Joyce DA, Douglas AE (2008) Importance of time and place: patterns in abundance of Symbiodinium Clades A and B in the tropical sea anemone Condylactis gigantea. Biol Bull 215:243–252CrossRefPubMedGoogle Scholar
  61. Veron JEN (1995) Corals in space and time: the biogeography and evolution of the Scleractinia. University of New South Wales Press, SydneyGoogle Scholar
  62. Veron JEN, Done TJ (1979) Corals and coral communities of Lord Howe Island. Aust J Mar Freshw Res 30:203–236CrossRefGoogle Scholar
  63. Visram S, Wiedenmann J, Douglas AE (2006) Molecular diversity of symbiotic algae of the genus Symbiodinium (Zooxanthellae) in cnidarians of the Mediterranean Sea. J Mar Biol Ass UK 86:1281–1283CrossRefGoogle Scholar
  64. Yamamura N (1996) Evolution of mutualistic symbiosis: a differential equation model. Popul Ecol 38:211–218CrossRefGoogle Scholar
  65. Yamano H, Hori K, Yamauchi M, Yamagawa O, Ohmura A (2001) Highest latitude coral reef at Iki Island, Japan. Coral Reefs 20:9–12CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • L. C. Wicks
    • 1
    • 2
  • E. Sampayo
    • 3
    • 4
  • J. P. A. Gardner
    • 1
  • S. K. Davy
    • 1
  1. 1.Centre for Marine Environmental & Economic Research, School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
  2. 2.Centre for Marine Biodiversity & Biotechnology, School of Life SciencesHeriot Watt UniversityEdinburgh, ScotlandUK
  3. 3.Centre for Marine StudiesThe University of QueenslandSt. LuciaAustralia
  4. 4.Department of BiologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations