Coral Reefs

, Volume 29, Issue 3, pp 621–625 | Cite as

High levels of acrylate in the Great Barrier Reef coral Acropora millepora

  • D. M. Tapiolas
  • C. A. Motti
  • P. Holloway
  • S. G. Boyle


High concentrations of acrylate, 542–683 μmol g−1 of the non-skeletal dry mass (DM), were measured in the Great Barrier Reef coral, Acropora millepora, using quantitative nuclear magnetic resonance spectroscopy (qNMR). As the amount of NaCl salt in the samples was substantial but variable, the total carbon (TC) in the coral extracts was determined, and the carbon due to acrylate found to represent 13–15% of the TC present in the total organic extracts (TOE). Acrylate, a C3 compound, is thus a substantial carbon source in the coral holobiont and is known to be derived from dimethylsulfoniopropionate (DMSP), which has previously been found in corals and other organisms that harbor Symbiodinium spp. The reason for such high levels of acrylate in the corals is unknown; possible functions include antimicrobial and/or antioxidant roles, as well as playing a role in the structuring of the healthy resident coral bacteria.


Acrylate Acrylic acid Acropora millepora qNMR Dimethylsulfoniopropionate 



We thank Drs Chris Battershill, Nicole Webster, David Bourne, Mr Yui Sato and Mr Adrian Lutz for sample collections and Mr Jean-Baptiste Raina for helpful discussions.

Supplementary material

338_2010_608_MOESM1_ESM.doc (168 kb)
Supplementary material 1 (DOC 168 kb)


  1. Ackman R, Hingley J, MacKay K (1972) Dimethyl sulfide as an odor component in Nova Scotia fall mackerel. J Fish Res Board Can 29:1085–1088Google Scholar
  2. Ansede JH, Pellechia PJ, Yoch DC (2001) Nuclear magnetic resonance analysis of [1–13C]dimethylsulfoniopropionate (DMSP) and [1–13C]acrylate metabolism by a DMSP lyase-producing marine isolate of the α-subclass of Proteobacteria. Appl Environ Microbiol 67:3134–3139CrossRefPubMedGoogle Scholar
  3. Broadbent A, Jones G (2004) DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef. Mar Freshw Res 55:849–855CrossRefGoogle Scholar
  4. Broadbent A, Jones G, Jones R (2002) DMSP in corals and benthic algae from the Great Barrier Reef. Estuar Coast Shelf Sci 55:547–555CrossRefGoogle Scholar
  5. Cantoni GL, Anderson DG (1956) Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa. J Biol Chem 222:171–177PubMedGoogle Scholar
  6. Coffroth MA, Jackson MG, Matrai P, Rauschenberg C (2008) Variation in zooxanthellae production of dimethylsulfoniopropionate (DMSP). Proc 11th Int Coral Reef SympGoogle Scholar
  7. Curson ARJ, Rogers R, Todd JD, Brearley CA, Johnston AWB (2008) Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides. Environ Microbiol 10:757–767CrossRefPubMedGoogle Scholar
  8. Ettinger-Epstein P, Motti CA, de Nys R, Wright AD, Battershill CN, Tapiolas DM (2007) Acetylated sesterterpenes from the Great Barrier Reef sponge Luffariella variabilis. J Nat Prod 70:648–651CrossRefPubMedGoogle Scholar
  9. Geffen Y, Ron EZ, Rosenberg E (2009) Regulation of release of antibacterials from stressed scleractinian corals. FEMS Microbiol Lett 295:103–109CrossRefPubMedGoogle Scholar
  10. Hill RW, Dacey JWH, Krupp DA (1995) Dimethylsulfoniopropionate in reef corals. Bull Mar Sci 57:489–494Google Scholar
  11. Hill RW, Dacey JWH, Edward A (2000) Dimethylsulfoniopropionate in giant clams (Tridacnidae). Biol Bull 199:108–115CrossRefPubMedGoogle Scholar
  12. Howard EC, Sun S, Biers EJ, Moran MA (2008) Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ Microbiol 10:2397–2410CrossRefPubMedGoogle Scholar
  13. Jones G, Curran M, Broadbent A, King S, Fischer E, Jones R (2007) Factors affecting the cycling of dimethylsulfide and dimethylsulfoniopropionate in coral reef waters of the Great Barrier Reef. Environ Chem 4:310–322Google Scholar
  14. Levasseur M, Keller MD, Bonneau E, D’Amours D, Bellows WK (1994) Oceanographic basis of a DMS-related Atlantic cod (Gadus morhua) fishery problem: blackberry feed. Can J Fish Aquat Sci 51:881–889CrossRefGoogle Scholar
  15. Malin G, Kirst GO (1997) Algal production of dimethylsulfide and its atmospheric role. J Phycol 33:889–896CrossRefGoogle Scholar
  16. Naumann MS, Richter C, el-Zibdah M, Wild C (2009) Coral mucus as an efficient trap for picoplanktonic cyanobacteria: implications for pelagic–benthic coupling in the reef ecosystem. Mar Ecol Prog Ser 385:65–67CrossRefGoogle Scholar
  17. Noordkamp DJB, Gieskesb WWC, Gottschal JC, Foney LJ, van Rijsselb M (2000) Acrylate in Phaeocystis colonies does not affect the surrounding bacteria. J Sea Res 43:253–264CrossRefGoogle Scholar
  18. Pauli GF, Jaki BU, Lankin DC (2005) Quantitative 1H NMR: development and potential of a method for natural products analysis. J Nat Prod 68:133–149CrossRefPubMedGoogle Scholar
  19. Raina J-B, Tapiolas DM, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulphur. Appl Env Microbiol 75:3492–3501CrossRefGoogle Scholar
  20. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073CrossRefPubMedGoogle Scholar
  21. Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14CrossRefGoogle Scholar
  22. Sharon G, Rosenberg E (2008) Bacterial growth on coral mucus. Curr Microbiol 56:481–488CrossRefPubMedGoogle Scholar
  23. Sieburth JM (1960) Acrylic acid, an “antibiotic” principle in Phaeocystis blooms in Antarctic waters. Science 132:676–677CrossRefPubMedGoogle Scholar
  24. Sieburth JM (1961) Antibiotic properties of acrylic acid, a factor in the gastrointestinal antiobioses of polar marine animals. J Bacteriol 82:72–79PubMedGoogle Scholar
  25. Slezak DM, Puskaric S, Herndl GJ (1994) Potential role of acrylic acid in bacterioplankton communities in the sea. Mar Ecol Prog Ser 105:191–197CrossRefGoogle Scholar
  26. Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43:183–197CrossRefGoogle Scholar
  27. Steinke M, Malin G, Archer SD, Burkill PH, Liss PS (2002) DMS production in a cocclithophorid bloom: evidence for the importance of dinoflagellate DMSP lyases. Aquat Microb Ecol 26:259–270CrossRefGoogle Scholar
  28. Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function of DMSP and DMS in marine algae. Nature 418:317–320CrossRefPubMedGoogle Scholar
  29. Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L (2007) Structural and regulatory genes required to make the gas dimethylsulfide in bacteria. Science 315:666–669CrossRefPubMedGoogle Scholar
  30. Van Alstyne KL (2008) Ecological and physiological roles of dimethylsulfoniopropionate and its products in marine macroalgae. In: Amsler C (ed) Algal chemical ecology. Springer, Heidelberg, pp 173–194CrossRefGoogle Scholar
  31. Van Alstyne KL, Wolfe GV, Freidenburg TL, Neill A, Hicken C (2001) Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar Ecol Prog Ser 213:53–65CrossRefGoogle Scholar
  32. Van Alstyne KL, Schupp P, Slattery M (2006) The distribution of dimethylsulfoniopropionate in tropical Pacific coral reef invertebrates. Coral Reefs 25:321–327CrossRefGoogle Scholar
  33. Van Alstyne KL, Dominique VJ III, Muller-Parker G (2009) Is dimethylsulfoniopropionate (DMSP) produced by the symbionts or the host in an anemone-zooxanthella symbiosis. Coral Reefs 28:167–176CrossRefGoogle Scholar
  34. Van Bergeijk SA, Stal LJ (2001) Dimethylsulfoniopropionate and dimethylsulfide in the marine flatworm Convoluta roscoffensis and its algal symbiont. Mar Biol 138:209–216CrossRefGoogle Scholar
  35. Wild C, Woyt H, Huettel M (2005) Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser 287:87–98CrossRefGoogle Scholar
  36. Yoch DC (2002) Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68:5804–5815CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • D. M. Tapiolas
    • 1
  • C. A. Motti
    • 1
  • P. Holloway
    • 2
  • S. G. Boyle
    • 1
  1. 1.Australian Institute of Marine ScienceTownsville MCAustralia
  2. 2.Department of BiologyUniversity of WinnipegManitobaCanada

Personalised recommendations