Coral Reefs

, Volume 29, Issue 2, pp 427–436 | Cite as

Beta diversity of cold-water coral reef communities off western Scotland

  • Lea-Anne Henry
  • Andrew J. Davies
  • J. Murray Roberts
Report

Abstract

Spatial heterogeneity in coral reef communities is well documented. This “species turnover” (beta diversity) on shallow warm-water reefs strongly conforms to spatial gradients in the environment as well as spatially autocorrelated biotic processes such as dispersal and competition. But the extent to which the environment and spatial autocorrelation create beta diversity on deep cold-water coral reefs such as those formed by Lophelia pertusa (Scleractinia) is unknown. The effects of remotely sensed and ground-truthed data were tested on the community composition of sessile suspension-feeding communities from the Mingulay Reef Complex, a landscape of inshore Lophelia reefs off the Scottish west coast. Canonical correspondence analysis determined that a statistically significant proportion (68%) of the variance in community composition could be explained by remotely sensed environmental variables (northerly and easterly aspect, seabed rugosity, depth), ground-truthed environmental variables (species richness and reef macrohabitat) and geospatial location. This variation was further partitioned into fractions explained by pure effects of the environment (51%), spatially structured environmental variables (12%) and spatial autocorrelation (5%). Beta diversity in these communities reflected the effects of both measured and unmeasured and spatially dependent environmental variables that vary across the reef complex, i.e., hydrography. Future work will quantify the significance and relative contributions of these variables in creating beta diversity in these rich communities.

Keywords

Beta diversity Lophelia pertusa Cold-water corals Acoustic remote sensing Variance partitioning 

Supplementary material

338_2009_577_MOESM1_ESM.doc (290 kb)
DOC 290 kb

References

  1. Adjeroud M (1997) Factors influencing spatial patterns on coral reefs around Moorea, French Polynesia. Mar Ecol Prog Ser 159:105–119CrossRefGoogle Scholar
  2. Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc R Soc B. doi:10.1098/rspb.2009.0339
  3. Andréfouet S, Riegl B (2004) Remote sensing: a key tool for interdisciplinary assessment of coral reef processes. Coral Reefs 24:1–4CrossRefGoogle Scholar
  4. Balata D, Piazzi L, Benedetti-Cecchi L (2007) Sediment disturbance and loss of beta diversity on subtidal rocky reefs. Ecology 88:2455–2461CrossRefPubMedGoogle Scholar
  5. Baselga A, Jiménez-Valverde A (2007) Environmental and geographical determinants of beta diversity of leaf beetles (Coleoptera: Chrysomelidae) in the Iberian Peninsula. Ecol Entomol 32:312–318CrossRefGoogle Scholar
  6. Beck MW (2000) Separating the elements of habitat structure: independent effects of habitat complexity and structural components on rocky intertidal gastropods. J Exp Mar Biol Ecol 249:29–49CrossRefPubMedGoogle Scholar
  7. Becking LE, Cleary DFR, de Voogd NJ, Renema W, de Beer M, van Soest RWM, Hoeksema BW (2006) Beta diversity of tropical marine benthic assemblages in the Spermonde Archipelago, Indonesia. Mar Ecol 27:76–88CrossRefGoogle Scholar
  8. Best B (1988) Passive suspension feeding in a sea pen: effects of ambient flow on volume flow rate and filtering efficiency. Biol Bull 175:332–342CrossRefGoogle Scholar
  9. Beyer A, Chakrabotry B, Schenke HW (2007) Seafloor characterization of the mound and channel provinces of the Porcupine Seabight - an application of the multi-beam angular backscatter data. Int J Earth Sci 96:11–20CrossRefGoogle Scholar
  10. Blake JA, Grassle JF (1994) Benthic community structure on the US South Atlantic slope off the Carolina: spatial heterogeneity in a current-dominated system. Deep-Sea Res (II) 41:835–874CrossRefGoogle Scholar
  11. Blanchet FG, Legendre P, Borcard D (2008) Modelling directional spatial processes in ecological data. Ecol Model 215:325–336CrossRefGoogle Scholar
  12. Bonsdorff E, Laine AO, Hänninen J, Vuorinen I, Norkko A (2003) Zoobenthos of the outer archipelago waters (N. Baltic Sea)-the importance of local conditions for spatial distribution patterns. Bor Env Res 8:135–145Google Scholar
  13. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  14. Buhl-Mortensen P, Dolan M, Buhl-Mortensen L (2009) Prediction of benthic biotopes on a Norwegian offshore bank using a combination of multivariate analysis and GIS classification. ICES J Mar Sci 66:2026–2032CrossRefGoogle Scholar
  15. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-e Ltd, PlymouthGoogle Scholar
  16. Cleary DFR, de Voogd NJ (2007) Environmental associations of sponges in the Spermonde Archipelago, Indonesia. J Mar Biol Assoc UK 87:1669–1676CrossRefGoogle Scholar
  17. Cordes EE, McGinley MP, Podowski EL, Becker EL, Lessard-Pilon S, Viada ST, Fisher CR (2008) Coral communities of the deep Gulf of Mexico. Deep Sea Res (I) 55:777–787CrossRefGoogle Scholar
  18. Danovaro R, Gambi C, Lampadariou N, Tselepides A (2008) Deep-sea nematode biodiversity in the Mediterranean basin: testing for longitudinal, bathymetric and energetic gradients. Ecography 31:231–244CrossRefGoogle Scholar
  19. Davies AJ, Wisshak M, Orr JC, Roberts JM (2008) Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia). Deep Sea Res (I) 55:1048–1062CrossRefGoogle Scholar
  20. Davies AJ, Duineveld G, Lavaleye M, Bergman M, van Haren H, Roberts JM (2009) Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnol Oceanogr 54:620–629Google Scholar
  21. Dolan MFJ, Grehan AJ, Guinan JC, Brown C (2008) Modelling the local distribution of cold-water corals in relation to bathymetric variables: Adding spatial context to deep-sea video data. Deep Sea Res (I) 55:1564–1579CrossRefGoogle Scholar
  22. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196:483–493CrossRefGoogle Scholar
  23. Dunn DC, Halpin PN (2009) Rugosity-based regional modeling of hard-bottom habitat. Mar Ecol Prog Ser 377:1–11CrossRefGoogle Scholar
  24. Fosså JH, Lindberg B, Christensen O, Lundålv T, Svellingen I, Mortensen PB, Alvsvåg J (2005) Mapping of Lophelia reefs in Norway: experiences and survey methods. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer-Verlag, Berlin Heidelberg, pp 359–391CrossRefGoogle Scholar
  25. Foubert A, Beck T, Wheeler AJ, Opderbecke O, Grehan A, Klages M, Thiede J, Henriet JP, The Polarstern ARK-XIX/3a Shipboard Party (2005) New view of the Belgica Mounds, Porcupine Seabight, NE Atlantic: preliminary results from the Polarstern ARK-XIX/3a ROV cruise. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer-Verlag, Berlin Heidelberg, pp 403–415CrossRefGoogle Scholar
  26. Frederiksen R, Jensen A, Westerberg H (1992) The distribution of the scleractinian coral Lophelia pertusa around the Faeroe Islands and the relation to internal tidal mixing. Sarsia 77:157–171Google Scholar
  27. Gage JD (2004) Diversity in deep-sea benthic macrofauna: the importance of local ecology, the larger scale, history and the Antarctic. Deep Sea Res (II) 51:1689–1708CrossRefGoogle Scholar
  28. Gheerardyn H, de Troch M, Vincx M, Vanreusel A (2009) Harpacticoida (Crustacea: Copepoda) associated with cold-water coral substrates in the Porcupine Seabight (NE Atlantic): species composition, diversity and reflections on the origin of the fauna. Sci Mar 73:747–760Google Scholar
  29. Glasby TM (2000) Surface composition and orientation interact to affect subtidal epibiota. J Exp Mar Biol Ecol 248:177–190CrossRefPubMedGoogle Scholar
  30. Glasby TM, Connell SD (2001) Orientation and position of substrata have large effects on epibiotic assemblages. Mar Ecol Prog Ser 214:127–135CrossRefGoogle Scholar
  31. Guinan J, Grehan AJ, Dolan MFJ, Brown C (2009) Quantifying relationships between video observations of cold-water coral cover and seafloor features in Rockall Trough, west of Ireland. Mar Ecol Prog Ser 375:125–138CrossRefGoogle Scholar
  32. Harborne AR, Mumby PJ, Żychaluk K, Hedley JD, Blackwell PG (2006) Modeling the beta diversity of coral reefs. Ecology 87:2871–2881CrossRefPubMedGoogle Scholar
  33. Harrison S (1997) How natural habitat patchiness affects the distribution of diversity in Californian serpentine chaparral. Ecology 78:1898–1906CrossRefGoogle Scholar
  34. Harrison S, Davies KF, Safford HD, Viers JH (2006) Beta diversity and the scale-dependence of the productivity-diversity relationship: a test in the Californian serpentine flora. J Anim Ecol 94:110–117Google Scholar
  35. Henry L-A, Roberts JM (2007) Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep Sea Res (I) 54:654–672CrossRefGoogle Scholar
  36. Henry L-A, Nizinski MS, Ross SW (2008) Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States. Deep Sea Res (I) 55:788–800CrossRefGoogle Scholar
  37. Hewitt JE, Thrush SF, Halliday J, Duffy C (2005) The importance of small-scale habitat structure for maintaining beta diversity. Ecology 86:1619–1626CrossRefGoogle Scholar
  38. Holland ND, Leonard AB, Strickler JR (1987) Upstream and downstream capture during suspension feeding by Oligometra serripinna (Echinodermata: Crinoidea) under surge conditions. Biol Bull 173:552–556CrossRefGoogle Scholar
  39. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  40. Hubbell SP (2005) Neutral theory in community ecology and the hypothesis of functional equivalence. Funct Ecol 19:166–172CrossRefGoogle Scholar
  41. Hughes DJ (2001) Quantitative analysis of a deep-water bryozoan collection from the Hebridean continental slope. J Mar Biol Assoc UK 81:987–993Google Scholar
  42. Jenness J (2002) Surface areas and ratios from elevation grid (surfgrids.avx) extension for ArcView 3.x. Jenness Enterprises. http://www.jennessent.com/arcview/gridtools.htm
  43. Jensen A, Frederiksen R (1992) The fauna associated with the bank-forming deepwater coral Lophelia pertusa (Scleractinia) on the Faroe Shelf. Sarsia 77:53–69Google Scholar
  44. Jonsson LG, Nilsson PG, Floruta F, Lundälv T (2004) Distributional patterns of macro- and megafauna associated with a reef of the cold-water coral Lophelia pertusa on the Swedish west coast. Mar Ecol Prog Ser 284:163–171CrossRefGoogle Scholar
  45. Kano A, Ferdelman TG, Williams T, Henriet J-P, Ishikawa T, Kawagoe N, Takashima C, Kakizaki Y, Abe K, Sakai S, Browning EL, Li X, Integrated Ocean Drilling Program Expedition 307 Scientists (2007) Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during Integrated Ocean Drilling Program Expedition 307. Geology 35:1051–1054CrossRefGoogle Scholar
  46. Knudby A, Le Drew E, Newman C (2007) Progress in the use of remote sensing for coral reef biodiversity studies. Progr Phys Geogr 31:421–434CrossRefGoogle Scholar
  47. Legendre PD (2008) Studying beta diversity: ecological variation partitioning by multiple regression analysis and canonical analysis. J Plant Ecol 1:3–8CrossRefGoogle Scholar
  48. Legendre PD, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  49. Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450CrossRefGoogle Scholar
  50. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613CrossRefGoogle Scholar
  51. Linke P, Pfannkuche O, Beuck L, Karstensen J (2006) Longterm observation of a cold-water coral mound in the Porcupine Seabight and implications for ESONET/CeltNet. In: Proceedings of the Fourth International Workshop on Scientific Use of Submarine Cables and Related Technologies, Dublin, 7–10 February 2006Google Scholar
  52. Maier C, shipboard scientific party (2006) Biology and ecosystem functioning of cold water coral bioherms at Mingulay (Hebrides), NE Atlantic. Cruise Report, BIOSYS, 2006. Cruise 64PE250 on R/V Pelagia. Oban-Oban. 7–23 July 2006Google Scholar
  53. McKinney FK, McKinney MJ (2002) Contrasting marine larval settlement patterns imply habitat-seeking behaviours in a fouling and a cryptic species (phylum Bryozoa). J Nat Hist 36:487–500CrossRefGoogle Scholar
  54. Mortensen PB, Fosså JH (2006) Species diversity and spatial distribution of invertebrates on deep-water Lophelia reefs in Norway. Proc 10th Int Coral Reef Symp 1849–1868Google Scholar
  55. Mortensen PB, Hovland M, Brattegard T, Farestveit R (1995) Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64° N on the Norwegian shelf: structure and associated megafauna. Sarsia 80:145–158Google Scholar
  56. Mortensen PB, Hovland MT, Fosså JH, Furevik DM (2001) Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J Mar Biol Assoc UK 81:581–597CrossRefGoogle Scholar
  57. Mumby PJ, Skirving W, Strong AE, Hardy JT, LeDrew EF, Hochberg EJ, Stumpf RP, David LT (2004) Remote sensing of coral reefs and their physical environment. Mar Pollut Bull 48:219–228CrossRefPubMedGoogle Scholar
  58. Picton BE, Morrow CC (2007) Encyclopedia of Marine Life of Britain and Ireland. http://www.habitas.org.uk/marinelife/species.asp?item=C7250
  59. Raes M, Vanreusel A (2005) The metazoan meiofauna associated with a cold-water coral degradation zone in the Porcupine Seabight (NE Atlantic). In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer-Verlag, Berlin Heidelberg, pp 821–847CrossRefGoogle Scholar
  60. Roberts JM, Brown CJ, Long D, Bates CR (2005a) Acoustic mapping using a multibeam echosounder reveals cold-water coral reefs and surrounding habitats. Coral Reefs 24:654–669CrossRefGoogle Scholar
  61. Roberts JM, Peppe OC, Dodds LA, Mercer DJ, Thomson WT, Gage JD, Meldrum DT (2005b) Monitoring environmental variability around cold-water coral reefs: the use of a benthic photolander and the potential of seafloor observatories. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer-Verlag, Berlin Heidelberg, pp 483–502CrossRefGoogle Scholar
  62. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547CrossRefPubMedGoogle Scholar
  63. Roberts JM, Henry L-A, Long D, Hartley JP (2008) Cold-water coral reef frameworks, megafaunal communities and evidence for coral carbonate mounds on the Hatton Bank, north east Atlantic. Facies 54:297–316CrossRefGoogle Scholar
  64. Roberts JM, Wheeler AJ, Freiwald A, Cairns SD (2009a) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, CambridgeGoogle Scholar
  65. Roberts JM, Davies AJ, Henry LA, Dodds LA, Duineveld GCA, Lavaleye MSS, Maier C, van Soest RWM, Bergman MJN, Hühnerbach V, Huvenne VAI, Sinclair DJ, Watmough T, Long D, Green SL, van Haren H (2009b) Mingulay reef complex: an interdisciplinary study of cold-water coral habitat, hydrography and biodiversity. Mar Ecol Prog Ser 397:139–151CrossRefGoogle Scholar
  66. Sánchez F, Serrano A, Gómez Ballesteros M (2009) Photogrammetric quantitative study of habitat and benthic communities of deep Cantabrian Sea hard grounds. Cont Shelf Res 29:1174–1188CrossRefGoogle Scholar
  67. Schlacher TA, Newell P, Clavier J, Schlacher-Hoenlinger MA, Chevillon C, Britton J (1998) Soft-sediment benthic community structure in a coral reef lagoon-the prominence of spatial heterogeneity and ‘spot endemism’. Mar Ecol Prog Ser 174:159–174CrossRefGoogle Scholar
  68. Schlacher TA, Schlacher-Hoenlinger M, Williams A, Althaus F, Hooper JNA, Kloser R (2007) Richness and distribution of sponge megabenthos in continental margin canyons off southeastern Australia. Mar Ecol Prog Ser 340:73–88CrossRefGoogle Scholar
  69. Serrano A, Sánchez F, García-Castrillo G (2006) Epibenthic communities of trawlable grounds of the Cantabrian Sea. Sci Mar 70(S1):149–159CrossRefGoogle Scholar
  70. Ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  71. Thiem Ø, Ravagnan E, Fosså JH, Berntsen J (2006) Food supply mechanisms for cold-water corals along a continental shelf edge. J Mar Syst 26:1481–1495Google Scholar
  72. van Oevelen D, Duineveld G, Lavaleye M, Mienis F, Soetaert K, Heip CHR (2009) The cold-water coral community as a hot spot for carbon cycling on continental margins: A food-web analysis from Rockall Bank (northeast Atlantic). Limnol Oceanogr 54:1829–1844Google Scholar
  73. van Soest RWM, Beglinger EJ (2008) New bioeroding sponges from Mingulay coldwater reefs, north-west Scotland. J Mar Biol Assoc UK. doi: 10.1017/S0025315408002725
  74. van Soest RWM, Lavaleye MSS (2005) Diversity and abundance of sponges in bathyal coral reefs of Rockall Bank, NE Atlantic, from boxcore samples. Mar Biol Res 1:338–349CrossRefGoogle Scholar
  75. van Soest RWM, Cleary DFR, de Kluijver MJ, Lavaleye MSS, Maier C, Van Duyl FC (2007) Sponge diversity and community composition in Irish bathyal coral reefs. Contrib Zool 76:121–142Google Scholar
  76. Vanaverbeke J, Arbizu PM, Dahms H-U, Schminke HK (1997a) The metazoan meiobenthos along a depth gradient in the Arctic Laptev Sea with special attention to nematode communities. Polar Biol 18:391–401CrossRefGoogle Scholar
  77. Vanaverbeke J, Soetaert K, Heip CHR, Vanreusel A (1997b) The metazoan meiobenthos along the continental slope of the goban spur (NE atlantic). J Sea Res 38:93–107CrossRefGoogle Scholar
  78. Voogd N, de Cleary DFR, Hoeksema BW, Noor A, van Soest RWM (2006) Sponge beta diversity in the Spermonde Archipelago, SW Sulawesi, Indonesia. Mar Ecol Prog Ser 309:131–142CrossRefGoogle Scholar
  79. Wang J, Wu Y, Jiang H, Li C, Dong H, Wu Q, Soininen J, Shen J (2008) High beta diversity of bacteria in the shallow terrestrial subsurface. Environ Microbiol 10:2537–2549CrossRefPubMedGoogle Scholar
  80. Weinberg C, Beuck L, Heidkamp S, Hebbeln D, Freiwald A, Pfannkuche O, Monteys X (2008) Franken Mound: facies and biocoenoses on a newly-discovered “carbonate mound” on the western Rockall Bank, NE Atlantic. Facies 54:1–24CrossRefGoogle Scholar
  81. Wilson MFJ, O’Connell B, Brown C, Guinan JC, Grehan AJ (2007) Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar Geodesy 30:3–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Lea-Anne Henry
    • 1
  • Andrew J. Davies
    • 1
    • 2
  • J. Murray Roberts
    • 1
    • 3
    • 4
  1. 1.Scottish Association for Marine Science, Dunstaffnage Marine LaboratoryOban, ArgyllUK
  2. 2.School of Ocean SciencesBangor UniversityMenai BridgeUK
  3. 3.Center for Marine ScienceUniversity of North Carolina-WilmingtonWilmingtonUSA
  4. 4.Centre for Marine Biodiversity and Biotechnology, School of Life SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations