Advertisement

Coral Reefs

, Volume 28, Issue 1, pp 215–225 | Cite as

High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium

  • E. J. Howells
  • M. J. H. van Oppen
  • B. L. Willis
Report

Abstract

The resilience of Symbiodinium harboured by corals is dependent on the genetic diversity and extent of connectivity among reef populations. This study presents genetic analyses of Great Barrier Reef (GBR) populations of clade C Symbiodinium hosted by the alcyonacean coral, Sinularia flexibilis. Allelic variation at four newly developed microsatellite loci demonstrated that Symbiodinium populations are genetically differentiated at all spatial scales from 16 to 1,360 km (pairwise ΦST = 0.01–0.47, mean = 0.22); the only exception being two neighbouring populations in the Cairns region separated by 17 km. This indicates that gene flow is restricted for Symbiodinium C hosted by S. flexibilis on the GBR. Patterns of population structure reflect longshore circulation patterns and limited cross-shelf mixing, suggesting that passive transport by currents is the primary mechanism of dispersal in Symbiodinium types that are acquired horizontally. There was no correlation between the genetic structure of Symbiodinium populations and their host S. flexibilis, most likely because different factors affect the dispersal and recruitment of each partner in the symbiosis. The genetic diversity of these Symbiodinium reef populations is on average 1.5 times lower on inshore reefs than on offshore reefs. Lower inshore diversity may reflect the impact of recent bleaching events on Sinularia assemblages, which have been more widespread and severe on inshore reefs, but may also have been shaped by historical sea level fluctuations or recent migration patterns.

Keywords

Dinoflagellate Population Genetic diversity Connectivity Sinularia 

Notes

Acknowledgments

Gratitude is expressed to C Bastidas for her previous work on S. flexibilis, which provided the samples for this research project, and to PB Souter, ER Ballment and AN Muirhead for their work in developing the Symbiodinium microsatellites. Thanks are also given to L Peplow and AN Muirhead for laboratory assistance at the Australian Institute of Marine Science. This project was funded by the Australian Research Council Centre of Excellence for Coral Reef Studies, the Australian Institute of Marine Science, the Marine and Tropical Sciences Research Facility and an AIMS@JCU support grant to E Howells.

Supplementary material

338_2008_450_MOESM1_ESM.doc (230 kb)
(DOC 230 kb)

References

  1. Aliño PM, Coll JJ (1989) Observations of the synchronized mass spawning and postsettlement activity of octocorals on the Great Barrier Reef, Australia: Biological aspects. Bull Mar Sci 43:697–707Google Scholar
  2. Andrews JC (1983) Water masses, nutrient levels, and seasonal drift on the outer central Queensland Shelf (Great Barrier Reef). Aust J Mar Fresh Res 34:821–834CrossRefGoogle Scholar
  3. Babcock RC, Heyward AJ (1986) Larval development of certain gamete-spawning corals. Coral Reefs 5:111–116CrossRefGoogle Scholar
  4. Baker AC (2001) Reef corals bleach to survive. Nature 411:765–766PubMedCrossRefGoogle Scholar
  5. Baker AC (2003) Flexibility and specificity in coral-algal symbioses: diversity, ecology and biogeography of Symbiodinium. Annu Rev Ecol Syst 34:661–689CrossRefGoogle Scholar
  6. Bastidas C, Benzie JAH, Uthicke S, Fabricius KE (2001) Genetic differentiation among populations of a broadcast spawning soft coral, Sinularia flexibilis, on the Great Barrier Reef. Mar Biol 138:517–525CrossRefGoogle Scholar
  7. Berkelmans R, Oliver JK (1999) Large-scale bleaching of corals on the Great Barrier Reef. Coral Reefs 18:55–60CrossRefGoogle Scholar
  8. Black KP (1994) Developments in our knowledge of dispersal on the Great Barrier Reef. In: Sammarco PW, Heron ML (eds) The bio-physics of marine larval dispersal. American Geophysical Union, Washington, DC, pp 159–192Google Scholar
  9. Blank RJ (1987) Cell architecture of the dinoflagellate Symbiodinium sp. inhabiting the Hawaiian stony coral Montipora verrucosa. Mar Biol 94:143–155CrossRefGoogle Scholar
  10. Brinkman R, Wolanski E, Deleersnijder E, McAllister F, Skirving W (2001) Oceanic inflow from the Coral Sea into the Great Barrier Reef. Estuar Coast Shelf Sci 54:655–668CrossRefGoogle Scholar
  11. Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34PubMedCrossRefGoogle Scholar
  12. Coffroth MA, Santos SR, Goulet TL (2001) Early ontogenetic expression of specificity in a cnidarian-algal symbiosis. Mar Ecol Prog Ser 222:85–96CrossRefGoogle Scholar
  13. Coffroth MA, Lewis CF, Santos SR, Weaver JL (2006) Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr Biol 16:R985–R987PubMedCrossRefGoogle Scholar
  14. Dight IJ, James MK (1994) Physical aspects of large-scale dispersal in the crown-of-thorns starfish, Acanthaster planci. In: Sammarco PW, Heron ML (eds) The bio-physics of marine larval dispersal. American Geophysical Union, Washington, DC, pp 193–214Google Scholar
  15. Dight IJ, James MK, Bode L (1988) Models of larval dispersal within the Great Barrier Reef: patterns of connectivity and their implications for species distributions. Proc 6th Int Coral Reef Symp 3:217–224Google Scholar
  16. Dight IJ, Bode L, James MK (1990) Modelling the dispersal of Acanthaster planci I. Large scale hydrodynamics, Cairns Section, Great Barrier Reef Marine Park. Coral Reefs 9:115–123CrossRefGoogle Scholar
  17. Doherty PJ, Planes S, Mather P (1995) Gene flow and larval duration in seven species of fish from the Great Barrier Reef. Ecology 76:2373–2391CrossRefGoogle Scholar
  18. Drew EA (1972) The biology and physiology of algal-invertebrate symbiosis. II. The density of algal cells in a number of hermatypic hard corals and alcyonarians from various depths. J Exp Mar Biol Ecol 9:71–75CrossRefGoogle Scholar
  19. Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709CrossRefGoogle Scholar
  20. Fitt WK, Trench RK (1983) The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal in culture. New Phytol 94:421–432CrossRefGoogle Scholar
  21. Fitt WK, Chang SS, Trench RK (1981) Motility patterns of different strains of the symbiotic dinoflagellate Symbiodinium (=Gymniodinium) microadriaticum (Freudenthal) in culture. Bull Mar Sci 31:436–443Google Scholar
  22. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–141CrossRefGoogle Scholar
  23. Glynn PW, Gassman NJ, Eakin CM, Cortes J, Smith DB, Guzman HM (1991) Reef coral reproduction in the eastern Pacific: Costa Rica, Panama and Galapagos Islands (Ecuador). I. Pocilloporidae. Mar Biol 109:355–368CrossRefGoogle Scholar
  24. Gómez-Cabrera M, del C, Ortiz JC, Loh WKW, Ward S (2008) Acquisition of symbiotic dinoflagellates (Symbiodinium) by juveniles of the coral Acropora longicyathus. Coral Reefs 27:219–226CrossRefGoogle Scholar
  25. Griffith JK (1994) Predation of soft corals (Octocorallia: Alcyonacea) on the Great Barrier Reef, Australia. Aust J Mar Freshw Res 45:1281–1284CrossRefGoogle Scholar
  26. Harii S, Kayanne H, Takigawa H, Hayashibara T, Yamamoto M (2002) Larval survivorship, competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Mar Biol 141:233–239Google Scholar
  27. Harris PT, Davies PJ (1989) Submerged reefs and terraces on the shelf of the Great Barrier Reef, Australia. Coral Reefs 8:87–98CrossRefGoogle Scholar
  28. Hellberg ME (2007) Footprints on water: the genetic wake of dispersal among reefs. Coral Reefs 26:463–473CrossRefGoogle Scholar
  29. Hirose M, Kinzie RAIII, Hidaka M (2001) Timing and process of entry of zooxanthellae into oocytes of hermatypic corals. Coral Reefs 20:273–280CrossRefGoogle Scholar
  30. Hoegh-Guldberg O (1999) Climate change, coral bleaching, and the future of the world’s coral reefs. Mar Freshw Res 50:839–866CrossRefGoogle Scholar
  31. Hughes TP, Baird AH, Dinsdale EA, Harriott VJ, Moltschaniwskj NA, Pratchett MS, Tanner JE, Willis BL (2002) Detecting regional variation using meta-analysis and large-scale sampling: latitudinal patterns in recruitment. Ecology 83:436–451CrossRefGoogle Scholar
  32. Hughes TP, Baird AH, Bellwood DR, Car M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933PubMedCrossRefGoogle Scholar
  33. Jokiel PL (1984) Long distance dispersal of corals by rafting. Coral Reefs 3:113–116CrossRefGoogle Scholar
  34. Kinzie RA (1974) Experimental infection of aposymbiotic gorgonian polyps with zooxanthellae. J Exp Mar Biol Ecol 15:335–345CrossRefGoogle Scholar
  35. LaJeunesse TC (2001) Investigating the biodiversity, ecology and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880CrossRefGoogle Scholar
  36. LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Molec Biol Evol 22:570–571PubMedCrossRefGoogle Scholar
  37. Lewis DH, Coffroth MA (2004) The acquisition of exogenous algal symbionts by an octocoral after bleaching. Science 304:1490–1492PubMedCrossRefGoogle Scholar
  38. Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494PubMedCrossRefGoogle Scholar
  39. Littman RA, van Oppen MJH, Willis BL (2008) Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). J Exp Mar Biol Ecol 364:48–53. doi: 10.1016/j.jembe.2008.06.034 CrossRefGoogle Scholar
  40. Lowe A, Harris S, Ashton P (2004) Ecological genetics: design, analysis and application. Blackwell Publishing, OxfordGoogle Scholar
  41. Luick JL, Mason L, Hardy T, Furnas MJ (2007) Circulation in the Great Barrier Reef Lagoon using numerical tracers and in situ data. Cont Shelf Res 27:757–778CrossRefGoogle Scholar
  42. Magalon H, Adjeroud M, Veuille M (2005) Patterns of genetic variation do not correlate with geographical distance in the reef-building coral Pocillopora meandrina in the South Pacific. Mol Ecol 14:1861–1868PubMedCrossRefGoogle Scholar
  43. Magalon H, Baudry E, Husté A, Adjeroud VeuilleM (2006) High genetic diversity of the symbiotic dinoflagellates in the coral Pocillopora meandrina from the South Pacific. Mar Biol 148:913–922CrossRefGoogle Scholar
  44. Manning MM, Gates RD (2008) Diversity in populations of free-living Symbiodinium from a Caribbean and Pacific reef. Limnol Oceanogr 53:1853–1861Google Scholar
  45. Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163CrossRefGoogle Scholar
  46. Muller-Parker G, D’Elia CF (1997) Interactions between corals and their symbiotic algae. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 96–113Google Scholar
  47. Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient poor environments. Bioscience 27:454–460CrossRefGoogle Scholar
  48. Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447PubMedCrossRefGoogle Scholar
  49. Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S158CrossRefGoogle Scholar
  50. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal K, Cooke R, McArdle D, McClenachan L, Newman MJH, Paredes WarnerRR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958PubMedCrossRefGoogle Scholar
  51. Parker GM (1984) Dispersal of zooxanthellae on coral reefs by predators on Cnidarians. Biol Bull 167:159–167CrossRefGoogle Scholar
  52. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  53. Pfiester LA, Anderson DM (1987) Dinoflagellate reproduction. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell Scientific Publications, Oxford, pp 611–648Google Scholar
  54. Porto I, Granados C, Restrepo JC, Sánchez JA (2008) Macroalgal-associated dinoflagellates belonging to the genus Symbiodinium in Caribbean reefs. PLoS ONE 3:e2160PubMedCrossRefGoogle Scholar
  55. R Development Core Team (2006) R: A language and environment for statistical computing. R foundation for statistical computing,Vienna, Austria. http://www.R-project.org
  56. Reed DH, Frankham R (2003) Population fitness is correlated with genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  57. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  58. Ridgway T, Gates RD (2006) Why are there so few genetic markers available for coral population analyses? Symbiosis 41:1–7CrossRefGoogle Scholar
  59. Sale PF (2004) Connectivity, recruitment variation, and the structure of reef fish communities. Integr Comp Biol 44:390–399CrossRefGoogle Scholar
  60. Santos SR, Coffroth MA (2003) Molecular genetic evidence that dinoflagellates belonging to the genus Symbiodinium Freudenthal are haploid. Biol Bull 204:10–20PubMedCrossRefGoogle Scholar
  61. Santos SR, Gutiérrez-Rodríguez C, Lasker HR, Coffroth MA (2003) Symbiodinium sp. associations in the gorgonian Pseudopterogorgia elisabethae in the Bahamas: high levels of genetic variability and population structure in symbiotic dinoflagellates. Mar Biol 143:111–120CrossRefGoogle Scholar
  62. Schwarz JA, Krupp DA, Weis VM (1999) Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. Biol Bull 196:70–79CrossRefGoogle Scholar
  63. Shimodaira H (2004) Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling. Ann Stat 32:2616–2641CrossRefGoogle Scholar
  64. Smith-Keune C, van Oppen M (2006) Genetic structure of a reef building coral from thermally distinct environments on the Great Barrier Reef. Coral Reefs 25:493–502CrossRefGoogle Scholar
  65. Suzuki R, Shimodaira H (2006) pvclust: Hierarchical clustering with p-values via multiscale bootstrap resampling. R package version 1.2-0. http://www.is.titech.ac.jp/~shimo/prog/pvclust/
  66. Trench RK, Blank RJ (1987) Symbiodinium microadriaticum Freudenthal, S. goreauii sp. nov., Skawagutti sp. nov. and Spilosum sp. nov.: gymnodinioid dinoflagellate symbionts of marine invertebrates. J Phycol 23:469–481CrossRefGoogle Scholar
  67. Underwood JN, Souter PB, Ballment ER, Lutz AH, van Oppen MJH (2006) Development of 10 polymorphic microsatellite markers from the herbicide-bleached tissues of the brooding pocilloporid coral Seriatopora hystrix. Mol Ecol Notes 6:176–178CrossRefGoogle Scholar
  68. van Oppen M (2001) In vitro establishment of symbiosis in Acropora millepora planulae. Coral Reefs 20:200CrossRefGoogle Scholar
  69. van Oppen MJH, Gates RD (2006) Conservation genetics and resilience of reef-building corals. Mol Ecol 15:3833–3863CrossRefGoogle Scholar
  70. van Oppen MJH, Mieog JC, Sánchez CA, Fabricius KE (2005) Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Mol Ecol 14:2403–2417PubMedCrossRefGoogle Scholar
  71. Wilkerson FP, Kobayashi D, Muscatine L (1988) Mitotic index and size of symbiotic algae in Caribbean reef corals. Coral Reefs 7:29–36CrossRefGoogle Scholar
  72. Willi Y, Van Buskirk J, Hoffman AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458CrossRefGoogle Scholar
  73. Williams DMcB, Wolanski E, Andrews JC (1984) Transport mechanisms and the potential movement of planktonic larvae in the central region of the Great Barrier Reef. Coral Reefs 3:229–236CrossRefGoogle Scholar
  74. Wilson K, Yutao L, Whan V, Lehnert S, Byrne K, Moore S, Pongsomboon S, Tassanakajon A, Rosenberg G, Ballment E, Fayazi Z, Swan J, Kenway M, Benzie J (2002) Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture 204:297–309CrossRefGoogle Scholar
  75. Wolanski E, Pickard GL (1985) Long-term observations of currents on the central Great Barrier Reef continental shelf. Coral Reefs 4:47–57CrossRefGoogle Scholar
  76. Wolanski E, Fabricius K, Spagnol S, Brinkman R (2005) Fine sediment budget on an inner-shelf coral-fringed island, Great Barrier Reef of Australia. Estuar Coast Shelf Sci 65:153–158CrossRefGoogle Scholar
  77. Yakobovitch T, Benayahu Y, Weis V (2004) Motility of zooxanthellae isolated from the Red Sea soft coral Heteroxenia fuscescens. J Exp Mar Biol Ecol 298:35–48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • E. J. Howells
    • 1
    • 2
    • 3
  • M. J. H. van Oppen
    • 1
    • 2
    • 3
  • B. L. Willis
    • 2
    • 3
  1. 1.Australian Institute of Marine ScienceTownsvilleAustralia
  2. 2.Australian Research Council Centre of Excellence for Coral Reef Studies, School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia
  3. 3.AIMS@JCU, Australian Institute of Marine Science, School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia

Personalised recommendations