Advertisement

Coral Reefs

, Volume 27, Issue 2, pp 289–293 | Cite as

A microsampling method for genotyping coral symbionts

  • D. W. Kemp
  • W. K. Fitt
  • G. W. Schmidt
Note

Abstract

Genotypic characterization of Symbiodinium symbionts in hard corals has routinely involved coring, or the removal of branches or a piece of the coral colony. These methods can potentially underestimate the complexity of the Symbiodinium community structure and may produce lesions. This study demonstrates that microscale sampling of individual coral polyps provided sufficient DNA for identifying zooxanthellae clades by RFLP analyses, and subclades through the use of PCR amplification of the ITS-2 region of rDNA and denaturing-gradient gel electrophoresis. Using this technique it was possible to detect distinct ITS-2 types of Symbiodinium from two or three adjacent coral polyps. These methods can be used to intensely sample coral-symbiont population/communities while causing minimal damage. The effectiveness and fine scale capabilities of these methods were demonstrated by sampling and identifying phylotypes of Symbiodinium clades A, B, and C that co-reside within a single Montastraea faveolata colony.

Keywords

Symbiodinium Coral sampling Zooxanthellae  Microhabitat Symbiosis Genotyping 

Notes

Acknowledgments

We would like to thank Brigitte Bruns, Daniel Thornhill, Jennifer McCabe Reynolds, Robin Smith, Randi Rotjan, Meredith Meyers, Xavier Hernandez-Pech, John Ware and Gordon Hendler for their laboratory, diving and field assistance. Special thanks to Scott Santos for discussions inspiring development of these techniques. This work was supported by the World Bank Center of Excellence Coral Bleaching Working Group and National Science Foundation grant NSF-0137007 to W.K. Fitt and G.W.Schmidt.

References

  1. Aeby GS, Santavy DL (2006) Factors affecting susceptibility of the coral Montastraea faveolata to black-band disease. Mar Ecol Prog Ser 318:103–110CrossRefGoogle Scholar
  2. Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond B Biol Sci 273:2305–2312CrossRefGoogle Scholar
  3. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of symbiodinium. Annu Rev of Ecol Evol Syst 34:661–689CrossRefGoogle Scholar
  4. Baker AC, Romanski AM (2007) Multiple symbiotic partnerships are common in scleractinian corals, but not in octocorals: comment on Goulet (2006). Mar Ecol Prog Ser 335:237–242CrossRefGoogle Scholar
  5. Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685CrossRefGoogle Scholar
  6. Garren M, Walsh SM, Caccone A, Knowlton N (2006) Patterns of association between Symbiodinium and members of the Montastraea annularis species complex on spatial scales ranging from within colonies to between geographic regions. Coral Reefs 25:503–512CrossRefGoogle Scholar
  7. Goulet TL (2006) Most corals may not change their symbionts. Mar Ecol Prog Ser 321:1–7CrossRefGoogle Scholar
  8. Goulet TL (2007) Most scleractinian corals and octocorals host a single symbiotic zooxanthella clade. Mar Ecol Prog Ser 335:243–248CrossRefGoogle Scholar
  9. Goulet TL, Cook CB, Goulet D (2005) Effect of short-term exposure to elevated temperatures and light levels on photosynthesis of different host-symbiont combinations in the Aiptasia pallida Symbiodinium symbiosis. Limnol Oceanogr 50:1490–1498CrossRefGoogle Scholar
  10. Henry LA, Hart M (2005) Regeneration from injury and resource allocation in sponges and corals : a review. Int Rev Hydrobiol 90:125–158CrossRefGoogle Scholar
  11. Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc Natl Acad Sci USA 89:10302–10305PubMedCrossRefGoogle Scholar
  12. Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond B Biol Sci 271:1757–1763CrossRefGoogle Scholar
  13. Knowlton N, Rohwer F (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162:S51–S62PubMedCrossRefGoogle Scholar
  14. LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  15. LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134PubMedCrossRefGoogle Scholar
  16. LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054CrossRefGoogle Scholar
  17. Little AF, van Oppen MJ, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494PubMedCrossRefGoogle Scholar
  18. Loh WKW, Loi T, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar Ecol Prog Ser 222:97–107CrossRefGoogle Scholar
  19. Mascarelli PE, Bunkley-Williams L (1999) An experimental field evaluation of healing in damaged, unbleached and artificially bleached star coral, Montastraea annularis. Bull Mar Sci 65:577–586Google Scholar
  20. Muscatine L, Porter JW (1977) Reef corals - mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460CrossRefGoogle Scholar
  21. Rowan R (2004) Coral bleaching - thermal adaptation in reef coral symbionts. Nature 430:742–742PubMedCrossRefGoogle Scholar
  22. Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral–algal symbiosis. Proc Natl Acad Sci USA 92:2850–2853PubMedCrossRefGoogle Scholar
  23. Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal–algal symbioses. Science 251:1348–1351PubMedCrossRefGoogle Scholar
  24. Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269PubMedCrossRefGoogle Scholar
  25. Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 16:3721–3733PubMedCrossRefGoogle Scholar
  26. Santos SR, Gutierrez-Rodriguez C, Lasker HR, Coffroth MA (2003) Symbiodinium sp associations in the gorgonian Pseudopterogorgia elisabethae in the Bahamas: high levels of genetic variability and population structure in symbiotic dinoflagellates. Mar Biol 143:111–120CrossRefGoogle Scholar
  27. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–92CrossRefGoogle Scholar
  28. Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535PubMedCrossRefGoogle Scholar
  29. Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722CrossRefGoogle Scholar
  30. Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359PubMedCrossRefGoogle Scholar
  31. Ulstrup KE, van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 12:3477–3484PubMedCrossRefGoogle Scholar
  32. Ulstrup KE, Berkelmans R, Ralph PJ, van Oppen MJH (2006) Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxanthellae. Mar Ecol Prog Ser 314:135–148CrossRefGoogle Scholar
  33. van Oppen MJH, Mieog JC, Sanchez CA, Fabricius KE (2005) Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Mol Ecol 14:2403–2417PubMedCrossRefGoogle Scholar
  34. Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012PubMedCrossRefGoogle Scholar
  35. Warner ME, LaJeunesse TC, Robison JD, Thur RM (2006) The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: potential implications for coral bleaching. Limnol Oceanogr 51:1887–1897CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Odum School of EcologyUniversity of GeorgiaAthensUSA
  2. 2.Department of Plant BiologyUniversity of GeorgiaAthensUSA

Personalised recommendations