Coral Reefs

, Volume 27, Issue 2, pp 247–254

Metamorphosis and acquisition of symbiotic algae in planula larvae and primary polyps of Acropora spp.

Report

Abstract

Coral planulae settle, then metamorphose and form polyps. This study examined the morphological process of metamorphosis from planulae into primary polyps in the scleractinian corals Acropora nobilis and Acropora microphthalma, using the cnidarian neuropeptide Hym-248. These two species release eggs that do not contain Symbiodinium. The mode of acquisition of freshly isolated Symbiodinium (zooxanthellae) (FIZ) by the non-symbiotic polyp was also examined. Non-Hym-248 treated swimming Acropora planulae did not develop blastopore, mesenteries or coelenteron until the induction of metamorphosis 16 days after fertilization. The oral pore was formed by invagination of the epidermal layer after formation of the coelenteron in metamorphosing polyps. At 3 days after settlement and metamorphosis, primary polyps exposed to FIZ established symbioses with the Symbiodinium. Two–four days after exposure to FIZ, the distribution of Symbiodinium was limited to the gastrodermis of the pharynx and basal part of the polyps. Eight–ten days after exposure to FIZ, Symbiodinium were present in gastrodermal cells throughout the polyps.

Keywords

Metamorphosis Planulae Acropora Symbiodinium Hym-248 

References

  1. Ambariyanto, Hoegh-Guldberg O (1997) Effect of nutrient enrichment in the field on the biomass, growth and calcification of the giant clam Tridacna maxima. Mar Biol 129:635–642Google Scholar
  2. Babcock RC, Heyward AJ (1986) Larval development of certain gamete-spawning scleractinian corals. Coral Reefs 5:111–116CrossRefGoogle Scholar
  3. Benayahu Y, Achituv Y, Berner T (1988) Embryogenesis and acquisition of algal symbionts by planulae of Xenia umbellata (Octocorallia: Alcyonacea). Mar Biol 100:93–101CrossRefGoogle Scholar
  4. Cervino JM, Hayes RL, Honovich M, Goreau TJ, Jones S, Rubec PJ (2003) Changes in zooxanthellae density, morphology, and mitotic index in hermatypic corals and anemones exposed to cyanide. Mar Pollut Bull 46:573–586PubMedCrossRefGoogle Scholar
  5. Fitt WK, Cook CB (2001) The effects of feeding or addition of dissolved inorganic nutrients in maintaining the symbiosis between dinoflagellates and a tropical marine cnidarian. Mar Biol 139:507–517CrossRefGoogle Scholar
  6. Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Coral reefs, ecosystem of the world 25. Elsevier, Amsterdam, pp 133–207Google Scholar
  7. Hayashibara T, Ohike S, Kakinuma Y (1997) Embryonic and larval development and planula metamorphosis of four gamete-spawning Acropora (Anthozoa, Scleractinia). Proc 8th Int Coral Reef Symp 2:1231–1236Google Scholar
  8. Heyward AJ, Negri AP (1999) Natural inducers for coral larval metamorphosis. Coral Reefs 18:273–279CrossRefGoogle Scholar
  9. Hirose M, Hidaka M (2006) Early development of zooxanthella-containing eggs of the corals Porites cylindrica and Montipora digitata: the endodermal localization of zooxanthellae. Zool Sci 23:873–881PubMedCrossRefGoogle Scholar
  10. Hirose M, Kinzie III RA, Hidaka M (2000) Early development of zooxanthella-containing eggs of the corals Pocillopora verrucosa and P. eydouxi with special reference to the distribution of zooxanthellae. Biol Bull 199:68–75PubMedCrossRefGoogle Scholar
  11. Isomura N, Nishihira M (2001) Size variation of planulae and its effect on the lifetime of planulae in three pocilloporied corals. Coral Reefs 20:309–315CrossRefGoogle Scholar
  12. Iwao K, Fujisawa T, Hatta M (2002) A cnidarian neuropeptide of the GLWamide family induces metamorphosis of reef-building corals in the genus Acropora. Coral Reefs 21:127–129Google Scholar
  13. Jones RJ, Yellowlees D (1997) Regulation and control of intracellular algae (=zooxanthellae) in hard corals. Phil Trans R Soc Lond B 352:457–468CrossRefGoogle Scholar
  14. Krupp DA (1983) Sexual reproduction and early development of the solitary coral Fungia scutaria (Anthozoa: Scleractinia). Coral Reefs 2:159–164CrossRefGoogle Scholar
  15. Lesser MP (1997) Oxidative stress cause coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192CrossRefGoogle Scholar
  16. Maruyama T, Heslinga GA (1997) Fecal discharge of zooxanthellae in the giant clam Tridacna derasa, with reference to their in situ growth rate. Mar Biol 127:473–477CrossRefGoogle Scholar
  17. Mate JL, Wilson J, Field S, Neves EG (1998) Fertilization dynamics and larval development of the scleractinian coral Montipora verrucosa in Hawai’i. In: Cox EF, Krupp DA, Jokiel PL (eds) Reproduction in reef corals. Hawaii Institute of Marine Biology, Kaneohe, Technical report 42, pp 27–39Google Scholar
  18. Morse ANC, Iwao K, Baba M, Shimoike K, Hayashibara T, Omori M (1996) An ancient chemosensory mechanism brings new life to coral reefs. Biol Bull 191:149–154CrossRefGoogle Scholar
  19. Morse DE, Hooker N, Morse ANC, Jensen RA (1988) Control of larval metamorphosis and recruitment in sympatric agariciid corals. J Exp Mar Biol Ecol 116:193–217CrossRefGoogle Scholar
  20. Morse DE, Morse ANC, Raimondi PT, Hooker N (1994) Morphogen-based chemical flypaper for Agaricia humilis coral larvae. Biol Bull 186:172–181CrossRefGoogle Scholar
  21. Muscatine L, Pool RR (1979) Regulation of numbers of intracellular algae. Proc R Soc Lond B 204:131–139PubMedCrossRefGoogle Scholar
  22. Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351PubMedCrossRefGoogle Scholar
  23. Schwarz JA, Krupp DA, Weis VM (1999) Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. Biol Bull 196:70–79CrossRefGoogle Scholar
  24. Smith GJ, Muscatine L (1999) Cell cycle of symbiotic dinoflagellates: variation in G1 phase-duration with anemone nutritional status and macronutrient supply in the Aiptasia pulchella-Symbiodinium pulchroroum symbiosis. Mar Biol 134:405–418CrossRefGoogle Scholar
  25. Szmant-Froelich AM, Yevich P, Pilson MQ (1980) Gametogenesis and early development of the temperate coral Astrangia danae (Anthozoa: Scleractinia). Biol Bull 158:257–269CrossRefGoogle Scholar
  26. Szmant-Froelich A, Reutter M, Riggs L (1985) Sexual reproduction of Favia fragum (Esper): Lunar patters of gametogenesis, embryogenesis and planulation in Puerto Rico. Bull Mar Sci 37:880–892Google Scholar
  27. Titlyanov EA, Titlyanova TV, Kalita TL, Yakovleva IM (2004) Rhythmicity in division and degradation of zooxanthellae in the hermatypic coral Stylophora pistillata. Symbiosis 36:211–224Google Scholar
  28. Tomascik T, Sander F (1987) Effects of eutrophication on reef-building corals III. Reproduction of reef-building coral Porites porites. Mar Biol 94:77–94CrossRefGoogle Scholar
  29. van Oppen M (2001) In vitro establishment of symbiosis in Acropora millepora planulae. Coral Reefs 20:200CrossRefGoogle Scholar
  30. Veron JEN, Wallace CC (1984) Scleractinia of Eastern Australia. Part 5. Family Acroporidae. Aust Inst Mar Sci Monogr 6:1–422Google Scholar
  31. Webster NS, Smith LD, Heyward AJ, Watts JE, Webb RI, Blackall LL, Negri AP (2004) Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl Environ Microbiol 70:1213–1221PubMedCrossRefGoogle Scholar
  32. Wilkerson FP, Kobayashi D, Muscatine L (1988) Mitotic index and size of symbiotic algae in Caribbean Reefs corals. Coral Reefs 7:29–36CrossRefGoogle Scholar
  33. Yuyama I, Hayakawa H, Endo H, Iwao K, Takeyama H, Maruyama T, Watanabe T (2005) Identification of symbiotically expressed coral mRNAs using a model infection system. Biochem Biophys Res Commun 336:793–798PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Chemistry, Biology and Marine ScienceUniversity of the RyukyusOkinawaJapan
  2. 2.Okinawa Churaumi AquariumOkinawaJapan

Personalised recommendations