Coral Reefs

, 26:487 | Cite as

DNA barcoding as a tool for coral reef conservation

  • J. Neigel
  • A. Domingo
  • J. Stake


DNA Barcoding (DBC) is a method for taxonomic identification of animals that is based entirely on the 5′ portion of the mitochondrial gene, cytochrome oxidase subunit I (COI-5). It can be especially useful for identification of larval forms or incomplete specimens lacking diagnostic morphological characters. DBC can also facilitate the discovery of species and in defining “molecular taxonomic units” in problematic groups. However, DBC is not a panacea for coral reef taxonomy. In two of the most ecologically important groups on coral reefs, the Anthozoa and Porifera, COI-5 sequences have diverged too little to be diagnostic for all species. Other problems for DBC include paraphyly in mitochondrial gene trees and lack of differentiation between hybrids and their maternal ancestors. DBC also depends on the availability of databases of COI-5 sequences, which are still in early stages of development. A global effort to barcode all fish species has demonstrated the importance of large-scale coordination and is yielding promising results. Whether or not COI-5 by itself is sufficient for species assignments has become a contentious question; it is generally advantageous to use sequences from multiple loci.


DNA barcoding DNA taxonomy Cytochrome oxidase I Environmental sampling Microarrays Real-time PCR 



We thank Bob Hanner for allowing us to analyze the progress of FISH-BOL and for providing us with updates on CBOL projects, James Albert and Emily Capuli for providing us with a current list of reef-associated fish species, Bob Vrijenhoek and two anonymous reviewers for helpful comments, and the National Science Foundation for support (OCE 0326383). We also thank the organizers and participants of the Coral Reef Barcoding and Environmental Sampling Workshop held at the Smithsonian Tropical Research Institute in 2005 for their stimulating discussions.


  1. Angelov S, Harb B, Kannan S, Khanna S, Kim J, Wang LS (2004) Genome identification and classification by short oligo arrays. In: Jonassen I, Kim J (eds) Algorithms in Bioinformatics, 4th International Workshop, WABI 2004, Bergen, Norway, September 17–21, 2004, Proceedings. Lecture Notes in Computer Science Vol 3240. Springer, Berlin, pp 400–411Google Scholar
  2. Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New YorkGoogle Scholar
  3. Avise JC, Ball RM (1990) Principles of genealogical concordance in species concepts and biological taxonomy. Oxf Surv Evol Biol 7:45–67Google Scholar
  4. Baldwin BS, Black M, Sanjur O, Gustafson R, Lutz RA, Vrijenhoek RC (1996) A diagnostic molecular marker for zebra mussels (Dreissena polymorpha) and potentially co-occurring bivalves: Mitochondrial COI. Mol Mar Biol Biotechnol 5:9–14Google Scholar
  5. Barber P, Boyce SL (2006) Estimating diversity of Indo-Pacific coral reef stomatopods through DNA barcoding of stomatopod larvae. Proc R Soc Lond B Biol Sci 273:2053–2061CrossRefGoogle Scholar
  6. Bellwood DR, Hughes TP, Folke C, Nystrom M (2004) Confronting the coral reef crisis. Nature 429:827–833CrossRefGoogle Scholar
  7. Bhadury P, Austen MC, Bilton DT, Lambshead PJD, Rogers AD, Smerdon GR (2006) Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Mar Ecol Prog Ser 320:1–9CrossRefGoogle Scholar
  8. Bilodeau AL, Lankford WS, Kim TJ, Felder DL, Neigel JE (1999) An ultrasensitive method for detection of single crab larvae (Sesarma reticulatum) using PCR amplification of a highly repetitive DNA sequence. Mol Ecol 8:683–684CrossRefGoogle Scholar
  9. Blaxter ML (2004) The promise of a DNA taxonomy. Proc R Soc Lond B Biol Sci 359:669–679CrossRefGoogle Scholar
  10. Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E (2005) Defining operational taxonomic units using DNA barcode data. Proc R Soc Lond B Biol Sci 360:1935–1943CrossRefGoogle Scholar
  11. Borneman J (2001) Probe selection algorithms with applications in the analysis of microbial communities. Bioinformatics 17:1–9CrossRefGoogle Scholar
  12. Brower AVZ (2006) Problems with DNA barcodes for species delimitation: ‘ten species’ of Astraptes fulgerator reassessed (Lepidoptera : Hesperiidae). Systematics and Biodiversity 4:127–132CrossRefGoogle Scholar
  13. Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst 27:477–500CrossRefGoogle Scholar
  14. Call DR (2005) Challenges and opportunities for pathogen detection using DNA microarrays. Crit Rev Microbiol 31:91–99CrossRefGoogle Scholar
  15. Cognato AI (2006) Standard percent DNA sequence difference for insects does not predict species boundaries. J Econ Entomol 99:1037–1045CrossRefGoogle Scholar
  16. Collins LS, Budd AF, Coates AG (1996) Earliest evolution associated with closure of the Tropical American Seaway. Proc Natl Acad Sci USA 93:6069–6072CrossRefGoogle Scholar
  17. Cote IM, Gill JA, Gardner TA, Watkinson AR (2005) Measuring coral reef decline through meta-analyses. Proc R Soc Lond B Biol Sci 360:385–395CrossRefGoogle Scholar
  18. Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527CrossRefGoogle Scholar
  19. DeLong EE (2005) Microbial community genomics in the ocean. Nat Rev Microbiol 3:459–469CrossRefGoogle Scholar
  20. Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexander EC, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57CrossRefGoogle Scholar
  21. Erpenbeck D, Hooper JNA, Worheide G (2006) CO1 phylogenies in diploblasts and the ‘Barcoding of Life’—are we sequencing a suboptimal partition? Mol Ecol Notes 6:550–553CrossRefGoogle Scholar
  22. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850CrossRefGoogle Scholar
  23. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299Google Scholar
  24. Froese R, Pauly D (2000) FishBase 2000: concepts, design and data sources. ICLARM, Los BañosGoogle Scholar
  25. Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: Frequency, causes, and consequences with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution and Systematics 34:397–423CrossRefGoogle Scholar
  26. Gaines SD, Gaylord B, Largier JL (2003) Avoiding current oversights in marine reserve design. Ecol Appl 13:S32–S46CrossRefGoogle Scholar
  27. Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960CrossRefGoogle Scholar
  28. Gaylord B, Gaines SD, Siegel DA, Carr MH (2005) Marine reserves exploit population structure and life history in potentially improving fisheries yields. Ecol Appl 15:2180–2191CrossRefGoogle Scholar
  29. Georgiev GP, Kramerov DA, Ryskov AP, Skryabin KG, Lukanidin EM (1982) Dispersed repetitive sequences in eukaryotic genomes and their possible biological significance. Cold Spring Harbor Symp Quant Biol 47:1109–1121Google Scholar
  30. Goffredi SK, Jones WJ, Scholin CA, Marin R, Vrijenhoek RC (2006) Molecular detection of marine invertebrate larvae. Mar Biotechnol 8:149–160CrossRefGoogle Scholar
  31. Gómez A, Wright PJ, Lunt DH, Cancino JM, Carvalho GR, Hughes RN (2007) Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon. Proc R Soc Lond B Biol Sci 274:199–207CrossRefGoogle Scholar
  32. Govindarajan AF, Halanych KK, Cunningham CW (2005) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol 146:213–222CrossRefGoogle Scholar
  33. Grantham BA, Eckert GL, Shanks AL (2003) Dispersal potential of marine invertebrates in diverse habitats. Ecol Appl 13:S108–S116CrossRefGoogle Scholar
  34. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971CrossRefGoogle Scholar
  35. Hanner R (2005) Proposed Standards for BARCODE Records in INSSC (BRIs) Database Working Group, Consortium for the Barcode of Life,
  36. Hare MP, Palumbi SR, Butman CA (2000) Single-step species identification of bivalve larvae using multiplex polymerase chain reaction. Mar Biol 137:953–961CrossRefGoogle Scholar
  37. Hebert PDN, Ratnasingham S, deWaard JR (2003a) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 270:S96–S99CrossRefGoogle Scholar
  38. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003b) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321CrossRefGoogle Scholar
  39. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004a) Identification of birds through DNA barcodes. PLoS Biology 2:1657–1663CrossRefGoogle Scholar
  40. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004b) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817CrossRefGoogle Scholar
  41. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994CrossRefGoogle Scholar
  42. Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24CrossRefGoogle Scholar
  43. Holland BS, Dawson MN, Crow GL, Hofmann DK (2004) Global phylogeography of Cassiopea (Scyphozoa : Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Mar Biol 145:1119–1128CrossRefGoogle Scholar
  44. Janzen DH (2004) Now is the time. Proc R Soc Lond B Biol Sci 359:731–732CrossRefGoogle Scholar
  45. Johnson NK, Cicero C (2004) New mitochondrial DNA data affirm the importance of Pleistocene speciation in North American birds. Evolution 58:1122–1130Google Scholar
  46. Jones GP, McCormick MI, Srinivasan M, Eagle JV (2004) Coral decline threatens fish biodiversity in marine reserves. Proc Natl Acad Sci USA 101:8251–8253CrossRefGoogle Scholar
  47. Knowlton N (1993) Sibling Species in the Sea. Annu Rev Ecol Syst 24:189–216CrossRefGoogle Scholar
  48. Knowlton N (2001) The future of coral reefs. Proc Natl Acad Sci USA 98:5419–5425CrossRefGoogle Scholar
  49. Lazoski C, Sole-Cava AM, Boury-Esnault N, Klautau M, Russo CAM (2001) Cryptic speciation in a high gene flow scenario in the oviparous marine sponge Chondrosia reniformis. Mar Biol 139:421–429CrossRefGoogle Scholar
  50. Lefebure T, Douady CJ, Gouy M, Gibert J (2006) Relationship between morphological taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold to help species delimitation. Mol Phylogenet Evol 40:435–447CrossRefGoogle Scholar
  51. Lipscomb D, Platnick N, Wheeler Q (2003) The intellectual content of taxonomy: a comment on DNA taxonomy. Trends Ecol Evol 18:65–66CrossRefGoogle Scholar
  52. Livak KJ (1999) Allelic discrimination using fluorogenic probes and the 5 ‘ nuclease assay. Genet Anal Biomol Eng 14:143–149CrossRefGoogle Scholar
  53. Livak KJ, Flood SJA, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotides with fluorescent dyes at oppposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods & Applications 4:357–362Google Scholar
  54. Mace GM (2004) The role of taxonomy in species conservation. Philos Trans R Soc Lond B 359:711–719CrossRefGoogle Scholar
  55. MaKinster JG, Roberts JE, Felder DL, Chlan CA, Bourdreaux M, Bilodeau AL, Neigel JE (1999) PCR amplification of a middle repetitive element detects larval stone crabs (Crustacea: Decapoda: Menippidae) in estuarine plankton samples. Mar Ecol Prog Ser 188:161–168Google Scholar
  56. Markmann M, Tautz D (2005) Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Proc R Soc Lond B Biol Sci 360:1917–1924CrossRefGoogle Scholar
  57. Martin AP, Palumbi SR (1993) Body size, metabolic-rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091CrossRefGoogle Scholar
  58. Matz MV, Nielsen R (2005) A likelihood ratio test for species membership based on DNA sequence data. Proc R Soc Lond B Biol Sci 360:1969–1974CrossRefGoogle Scholar
  59. McClanahan TR (2002) The near future of coral reefs. Environ Conserv 29:460–483CrossRefGoogle Scholar
  60. McFadden CS, Tullis I, Hutchinson MB, Winner K (2000) Rates of evolution of cnidarian mitochondrial genes. Am Zool 40:1124–1124Google Scholar
  61. McManus J (1985) Marine speciation, tectonics and sea-level changes in southeast Asia. Proc 5th Int Coral Reef Congr 4:133–138Google Scholar
  62. Meyer CP, Paulay G (2005) DNA barcoding: Error rates based on comprehensive sampling. PLoS Biology 3:2229–2238Google Scholar
  63. Mikkelsen PM, Cracraft J (2001) Marine biodiversity and the need for systematic inventories. Bull Mar Sci 69:525–534Google Scholar
  64. Moritz C, Cicero C (2004) DNA barcoding: Promise and pitfalls. PLoS Biology 2:1529–1531CrossRefGoogle Scholar
  65. Naviaux RK, Good B, McPherson JD, Steffen DL, Markusic D, Ransom B, Corbeil J (2005) Sand DNA - a genetic library of life at the water’s edge. Mar Ecol Prog Ser 301:9–22CrossRefGoogle Scholar
  66. Neigel JE (2003) Species-area relationships and marine conservation. Ecol Appl 13:S138–S145CrossRefGoogle Scholar
  67. Neigel JE, Avise JC (1986) Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In: Karlin S, Nevo E (eds) Evolutionary Processes and Theory. Academic Press, New York, pp 515–534Google Scholar
  68. Nielsen R, Matz M (2006) Statistical approaches for DNA barcoding. Syst Biol 55:162–169CrossRefGoogle Scholar
  69. O’Dor R, Gallardo VA (2005) How to census marine life: ocean realm field projects. Sci Mar 69:181–199Google Scholar
  70. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958CrossRefGoogle Scholar
  71. Paquin P, Hedin M (2004) The power and perils of ‘molecular taxonomy’: a case study of eyeless and endangered Cicurina (Araneae : Dictynidae) from Texas caves. Mol Ecol 13:3239–3255CrossRefGoogle Scholar
  72. Pegg G, Sinclair B, Briskey L, Aspden W (2006) MtDNA barcode identification of fish larvae in the southern Great Barrier Reef, Australia. Sci Mar 70S2:7–12Google Scholar
  73. Powers T (2004) Nematode molecular diagnostics: From bands to barcodes. Annu Rev Phytopahtol 42:367–383CrossRefGoogle Scholar
  74. Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data Systems. Mol Ecol Notes 7:355–364CrossRefGoogle Scholar
  75. Reaka-Kudla ML (1997) The global biodiversity of coral reefs: A comparison with rain forests. In: Reaka-Kudla ML, Wilson DE, Wilson EO (eds) Biodiversity II: understanding and protecting our biological resources. Joseph Henry Press, Washington, pp 83–108Google Scholar
  76. Reaka-Kudla ML (2000) The evolution of endemism in insular Pacific faunas: coral-dwelling stomatopods. Journal of Crustacean Biology 20:56–70Google Scholar
  77. Relogio A, Schwager C, Richter A, Ansorge W, Valcarcel J (2002) Optimization of oligonucleotide-based DNA microarrays. Nucl Acids Res 30:e51CrossRefGoogle Scholar
  78. Richardson D, Vanwye J, Exum A, Cowen R, Crawford D (2006) High-throughput species identification: from DNA isolation to bioinformatics. Mol Ecol Notes “in press”Google Scholar
  79. Robba L, Russell SJ, Barker GL, Brodie J (2006) Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). Am J Bot 93:1101–1108Google Scholar
  80. Roberts CM (1997) Connectivity and management of Caribbean coral reefs. Science 278:1454–1457CrossRefGoogle Scholar
  81. Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284CrossRefGoogle Scholar
  82. Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271:640–642CrossRefGoogle Scholar
  83. Rubinoff D (2006) DNA barcoding evolves into the familiar. Conserv Biol 20:1548–1549CrossRefGoogle Scholar
  84. Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Proc R Soc Lond B Biol Sci 360:1879–1888CrossRefGoogle Scholar
  85. Schander C, Willassen E (2005) What can biological barcoding do for marine biology?. Mar Biol Res 1:79–83CrossRefGoogle Scholar
  86. Shaw KL (2002) Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: What mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proc Natl Acad Sci USA 99:16122–16127CrossRefGoogle Scholar
  87. Shearer TL, Coffroth MA (2006) Genetic identification of Caribbean scleractinian coral recruits at the Flower Garden Banks and the Florida Keys. Mar Ecol Prog Ser 306:133–142CrossRefGoogle Scholar
  88. Shearer TL, Van Oppen MJH, Romano SL, Worheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487CrossRefGoogle Scholar
  89. Smith PJ, McVeagh SM, Allain V, Sanchez C (2005) DNA identification of gut contents of large pelagic fishes. J Fish Biol 67:1178–1183CrossRefGoogle Scholar
  90. St Mary CM, Osenberg CW, Frazer TK, Lindberg WJ (2000) Stage structure, density dependence and the efficacy of marine reserves. Bull Mar Sci 66:675–690Google Scholar
  91. Stanley SM (1998) Macroevolution, Pattern and Process. Johns Hopkins University Press, BaltimoreGoogle Scholar
  92. Summerbell RC, Levesque CA, Seifert KA, Bovers M, Fell JW, Diaz MR, Boekhout T, de Hoog GS, Stalpers J, Crous PW (2005) Microcoding: the second step in DNA barcoding. Proc R Soc Lond B Biol Sci 360:1897–1903CrossRefGoogle Scholar
  93. Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814CrossRefGoogle Scholar
  94. Vadopalas B, Bouma JV, Jackels CR, Friedman CS (2006) Application of real-time PCR for simultaneous identification and quantification of larval abalone. J Exp Mar Biol Ecol 334:219–228CrossRefGoogle Scholar
  95. van Oppen MJH, Gates RD (2006) Conservation genetics and the resilience of reef-building corals. Mol Ecol 15:3863–3883CrossRefGoogle Scholar
  96. Vawter L, Brown WM (1986) Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science 234:194–196CrossRefGoogle Scholar
  97. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74CrossRefGoogle Scholar
  98. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Proc R Soc Lond B Biol Sci 360:1847–1857CrossRefGoogle Scholar
  99. Watanabe S, Minegishi Y, Yoshinaga T, Aoyama J, Tsukamoto K (2004) A quick method for species identification of Japanese eel (Anguilla japonica) using real-time PCR: An onboard application for use during sampling surveys. Mar Biotechnol 6:566–574CrossRefGoogle Scholar
  100. Webb KE, Barnes DKA, Clark MS, Bowden DA (2006) DNA barcoding: A molecular tool to identify Antarctic marine larvae. Deep-Sea Res Part II 53:1053–1060CrossRefGoogle Scholar
  101. Wheeler QD (2005) Losing the plot: DNA “barcodes” and taxonomy. Cladistics 21:405–407CrossRefGoogle Scholar
  102. Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55CrossRefGoogle Scholar
  103. Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol :54Google Scholar
  104. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Louisiana at LafayetteLafayetteUSA
  2. 2.Smithsonian Tropical Research InstituteMiamiUSA
  3. 3.Division of Science and MathUniversity of the Virgin IslandsSt. ThomasUSA

Personalised recommendations