Coral Reefs

, Volume 26, Issue 1, pp 113–126

The structuring role of microhabitat type in coral degradation zones: a case study with marine nematodes from Kenya and Zanzibar

  • M. Raes
  • M. De Troch
  • S. G. M. Ndaro
  • A. Muthumbi
  • K. Guilini
  • A. Vanreusel
Report

Abstract

Nematode genus assemblages were identified from four locations in coral degradation zones (CDZs) along the African east coast: Watamu and Tiwi Beach (Kenya) and Matemwe and Makunduchi (Zanzibar). Three microhabitat types were distinguished: coralline sediment, coral gravel and coral fragments. Nematode community composition was comparable to that of other studies dealing with the same habitat. The presence of a common genus pool in CDZs was reflected in the considerable similarities between samples. The addition of coral fragments as a habitat for nematodes resulted in an increased importance of taxa typical for coarse sediments and large substrata. Local and regional turnover were of the same order of magnitude. The structuring effect of microhabitat type clearly overrode the effect on a local and regional scale. Differences in sediment characteristics were more important in structuring the nematode assemblages than differences between the coralline sediment and coral fragments. No effect related to the three-dimensional structure of coral fragments was found. Differences between nematode assemblages in the coralline sediment and on coral fragments were attributed to the exposed nature of the latter habitat, its large surface area and its microbial or algal cover. Differences in available food sources were reflected in nematode trophic composition.

Keywords

Coral degradation zones Nematodes Microhabitats Spatial turnover Indian Ocean 

References

  1. Alongi DM (1986) Population structure and trophic composition of the free-living nematodes inhabiting carbonate sands of Davies Reef, Great Barrier Reef, Australia. Aust J Mar Freshw Res 37:609–619CrossRefGoogle Scholar
  2. Boucher G (1997) Structure and biodiversity of nematode assemblage in the SW Lagoon of New Caledonia. Coral Reefs 16:177–186CrossRefGoogle Scholar
  3. Boucher G, Gourbault N (1990) Sublittoral meiofauna and diversity of nematode assemblages off Guadeloupe Islands (French West Indies). Bull Mar Sci 47:448–463Google Scholar
  4. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austr J Ecol 18:117–143CrossRefGoogle Scholar
  5. Clarke KR, Gorley RN (2001) PRIMER v5: User Manual/Tutorial. PRIMER-E, PlymouthGoogle Scholar
  6. de Jesús-Navarrete A (2003) Diversity of Nematoda in a Carribean Atoll. Banco Chinchorro, Mexico. Bull Mar Sci 73:47–56Google Scholar
  7. Deprez T, Vanden Berghe E, Vincx M (2004) NeMys: a multidisciplinary biological information system. In: Vanden Berghe E, Brown M, Costello MJ, Heip C, Levitus S, Pissierssens P (eds) Proceedings of ‘the colour of ocean data’ Symposium, Brussels, 25–27th November 2002, IOC Workshop Report 188, UNESCO, Paris, pp 57–63Google Scholar
  8. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:356–366CrossRefGoogle Scholar
  9. Fisher R (2003) Spatial and temporal variations in nematode assemblages in tropical seagrass sediments. Hydrobiologia 493:43–63CrossRefGoogle Scholar
  10. Fisher R, Sheaves MJ (2003) Community structure and spatial variability of marine nematodes in tropical Australian pioneer seagrass meadows. Hydrobiologia 495:143–158CrossRefGoogle Scholar
  11. Gauch HG Jr, Whittaker RH (1981) Hierarchical classification of community data. J Ecol 69:135–152CrossRefGoogle Scholar
  12. Giere O (1993) Meiobenthology: the microscopic fauna in aquatic sediments. Springer, Berlin Heidelberg New YorkGoogle Scholar
  13. Gourbault N, Renaud-Mornant J (1989) Distribution, assemblages et stratégies trophiques des micro-méiofaunes d’un atoll semi-fermé (Tuamotu Est). CR Acad Sci Paris 309:69–75Google Scholar
  14. Gourbault N, Renaud-Mornant J (1990) Micro-meiofaunal community structure and nematode diversity in a lagoonal ecosystem (Fangataufa, Eastern Tuamotu Archipelago). PSZNI Mar Ecol 11:173–189Google Scholar
  15. Govaere JC, Van Damme D, Heip C, De Coninck LAP (1980) Benthic communities in the Southern Bight of the North Sea and their use in ecological monitoring. Helgol Wiss Meeresunters 33:507–521CrossRefGoogle Scholar
  16. Grelet Y (1984) Peuplements meiobenthiques et structure de la nematofaune du Golfe d’Aqaba (Jordanie-Mer Rouge). Ph.D. thesis, University of Aix-Marseille, France, p140Google Scholar
  17. Heip C, Herman R, Bisschop G, Govaere JCR, Holvoet M, Van Damme D, Vanosmael C, Willems KA, De Coninck LAP (1979) Benthic studies of the Southern Bight of the North Sea and its adjacent continental estuaries. Coordinated research actions interuniversitary actions oceanology: symposium reports. Programmatie van het Wetenschapsbeleid, Brussels, Belgium, Progress Report I, ICES, CM/L9, pp 133–163Google Scholar
  18. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Annu Rev 23:399–489Google Scholar
  19. Hill MO (1979) TWINSPAN—A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ecology and Systematics, Cornell University, Ithaca, NYGoogle Scholar
  20. Hopper BE, Meyers SP (1967) Population studies on benthic nematodes within a subtropical seagrass community. Mar Biol 1:85–96CrossRefGoogle Scholar
  21. Inglis WG (1968) Interstitial nematodes from St. Vincent Bay, New Caledonia. In: Expédition Française sur les récifs corallines de la Nouvelle-Calédonie. Singer-Polignac, Paris, Edit 2:29–74Google Scholar
  22. Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382CrossRefGoogle Scholar
  23. Kotta J, Boucher G (2001) Interregional variation of free-living nematode assemblages in tropical coral sands. Cah Biol Mar 42:315–326Google Scholar
  24. Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2001) The geographical structure of British bird distributions: diversity, spatial turnover and scale. J Anim Ecol 70:966–979CrossRefGoogle Scholar
  25. Li J, Vincx M, Herman PMJ, Heip C (1997) Monitoring meiobenthos using cm-, m- and km-Scales in the Southern Bight of the North Sea. Mar Environ Res 43:265–278CrossRefGoogle Scholar
  26. Lorenzen S (1973) Die familie Epsilonematidae (Nematodes). Mikrofauna des Meeresbodens 25:1–86Google Scholar
  27. Lorenzen S (1994) The phylogenetic systematics of freeliving nematodes. The Ray Society, LondonGoogle Scholar
  28. McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data, Version 4.32. MjM Software. Gleneden Beach, OR, USAGoogle Scholar
  29. Ndaro SGM, Ólafsson E (1999) Soft-bottom fauna with emphasis on nematode assemblage structure in a tropical intertidal lagoon in Zanzibar, eastern Africa: I. spatial variability. Hydrobiologia 405:133–148CrossRefGoogle Scholar
  30. Netto SA, Warwick RM, Attrill MJ (1999) Meiobenthic and macrobenthic community structure in carbonate sediments of Rocas Atoll (North-east, Brazil). Estuar Coast Shelf Sci 48:39–50CrossRefGoogle Scholar
  31. Netto SA, Attrill MJ, Warwick RM (2003) The relationship between benthic fauna, carbonate sediments and reef morphology in reef-flat tidal pools of Rocas Atoll (north-east Brazil). J Mar Biol Ass UK 83:425–432CrossRefGoogle Scholar
  32. Ólafsson E, Johnstone RW, Ndaro SGM (1995) Effects of intensive seaweed farming on the meiobenthos in a tropical lagoon. J Exp Mar Biol Ecol 191:101–117CrossRefGoogle Scholar
  33. Ott JA (1995) Sulphide symbioses in shallow sands. In: Eleftheriou A, Ansell A, Smith C (eds) Biology and ecology of shallow coastal waters. Olsen & Olsen, Fredensborg, Denmark, pp 143–147Google Scholar
  34. Ott J, Bright M, Bulgheresi S (2005) Marine microbial thiotrophic ectosymbioses. Oceanogr Mar Biol 42:95–118CrossRefGoogle Scholar
  35. Raes M, Vanreusel A (2006) Microhabitat type determines the composition of nematode communities associated with sediment-clogged cold-water coral framework in the Porcupine Seabight (NE Atlantic). Deep-Sea Res Part I 53:1880–1894CrossRefGoogle Scholar
  36. Raes M, Decraemer W, Vanreusel A (2006) Postembryonic morphology in epsilonematidae, with a discussion on the variability of Caudal Gland Outlets. J Nematol 38(1):97–118Google Scholar
  37. Renaud-Mornant J, Gourbault N (1984) Premières prospections meiofaunistiques en Guadeloupe II: Communautés des sables littoraux. Hydrobiologia 118:113–118CrossRefGoogle Scholar
  38. Seinhorst JW (1959) A rapid method for the transfer of nematodes from fixative to unhydrous glycerine. Nematologica 4:67–69CrossRefGoogle Scholar
  39. Soetaert K, Muthumbi A, Heip C (2002) Size and shape of ocean margin nematodes: morphological diversity and depth-related patterns. Mar Ecol Prog Ser 242:179–193Google Scholar
  40. Stauffer H (1924) Die Lokomotion der Nematoden. Beiträge zur Kausalmorphologie der Fadenwürmer. Zool Jahrb 49:1–118Google Scholar
  41. Suess E (1968) Calcium carbonate interaction with organic compounds. Ph.D. thesis, Lehigh University, USA, p153Google Scholar
  42. Thomassin BA, Vivier MH, Vitiello P (1976) Distribution de la méiofaune des sables corallines de la retenue d’eau épirécifale du Grand Récif de Tuléar (Madagascar). J Exp Mar Biol Ecol 22:31–53CrossRefGoogle Scholar
  43. Tietjen JH (1991) Ecology of free-living Nematodes from the Continental Shelf of the Central Great Barrier Reef Province. Estuar Coast Shelf Sci 32:421–438CrossRefGoogle Scholar
  44. Vanaverbeke J, Gheskiere T, Steyaert M, Vincx M (2002) Nematode assemblages from subtidal sandbanks in the Southern Bight of the North Sea: effect of small sedimentological differences. J Sea Res 48:197–207CrossRefGoogle Scholar
  45. Vanaverbeke J, Soetaert K, Vincx M (2004) Changes in morphometric characteristics of nematode communities during a spring phytoplankton bloom deposition. Mar Ecol Prog Ser 273:139–146Google Scholar
  46. Vincx M (1996) Meiofauna in marine and freshwater sediments. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. Cab International, Wallingford, UK, pp 187–195Google Scholar
  47. Warwick RM, Platt HM, Somerfield PJ (1998) Free-living marine Nematodes Part III Monhysterids. In: Barnes RSK, Crother JH (eds) Synopses of the British Fauna (New Series). The Linnean Society of London, Shrewsbury, pp 1–296Google Scholar
  48. Wieser W (1953) Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Eine ökologisch—morphologische Studie. Arkiv für Zoologie 4:439–483Google Scholar
  49. Wieser W, Hopper BE (1967) Marine nematodes of the east coast of North America I Florida. Bull Mus Comp Zool 135:239–344Google Scholar
  50. Willems KA, Vincx M, Claeys D, Vanosmael C, Heip C (1982) Meiobenthos of a sublittoral sandbank in the southern bight of the North Sea. J Mar Biol Assoc UK 62:535–548CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • M. Raes
    • 1
  • M. De Troch
    • 1
  • S. G. M. Ndaro
    • 2
  • A. Muthumbi
    • 3
  • K. Guilini
    • 1
  • A. Vanreusel
    • 1
  1. 1.Marine Biology Section, Biology DepartmentGhent UniversityGentBelgium
  2. 2.Department of Aquatic Environment and ConservationUniversity of Dar Es SalaamDar Es SalaamTanzania
  3. 3.Department of ZoologyUniversity of NairobiNairobiKenya

Personalised recommendations