Coral Reefs

, 25:297 | Cite as

Assessment of the relative contribution of asexual propagation in a population of the coral-excavating sponge Cliona delitrix from the Bahamas

Note

Abstract

Cliona delitrix is a very destructive coral-excavating sponge in Caribbean coral reef systems, particularly for Montastraea species. Little is known about how these excavating sponges propagate across coral reefs. In this study a hypothesis was tested that coral breakage caused by the bioeroding activity facilitates the asexual propagation of this sponge and in turn favors the spread of the most aggressive sponge genotypes. An allozyme analysis, involving 12 loci systems of 52 sponge individuals from a total of 13 Montastraea heads, found that no two sponges possessed identical multi-locus genotypes. Contrary to the pattern expected for fragmenting species, the incidence of clonality and asexual propagation at the population level was minimal. The lack of correlation between genetic and physical distances for the studied sponges also suggests that population maintenance appears to derive from larval dispersal, with a spatial range of dispersal larger than the average distance between the coral heads (10–102 m).

Keywords

Allozymes Porifera Asexual reproduction Genotype 

References

  1. Ayre DJ, Dufty S (1994) Evidence for restricted gene flow in the viviparous coral Seriatopora hystrix on Australia’s Great Barrier Reef. Evolution 48:1183–1201CrossRefGoogle Scholar
  2. Barthel D, Sundet J, Barthel KG (1994) The boring sponge Cliona vastifica in a subartic population of Chlamys islandica—an example of balanced commensalism? In: van Soest RWM, van Kempen TMG, Braekman JC (eds) Sponge in time and space. Balkema, Rotterdam, pp 289–295Google Scholar
  3. Belkhir K, Borsa P, Goudet J, Chikhi L, Bonhomme F (1996) Génétix, logiciel sous Windows pour la génétique des populations. Laboratoire Génome, France, Populations et Interactions, CNRS UPR 9060. Université Montpellier 2Google Scholar
  4. Bohonak AJ (2002) IBD (Isolation By Distance): a program for analyses of isolation by distance. J Hered 93:153–154PubMedCrossRefGoogle Scholar
  5. Borsa P, Jousselin Y, Delay B (1992) Relationship between allozymic heterozygosity, body size and survival to natural anoxic stress in the palourde, Ruditapes decussatus L. (Bivalvia: Veneridae). J Exp Mar Biol Ecol 155:169–181CrossRefGoogle Scholar
  6. Boury-Esnault N, Solé-Cava AM (2004) Recent contributions of genetics to the study of sponge systematics and biology. Bolletino dei Musei de l’Istituto di Biologia della Universita di Genova 68:3–18Google Scholar
  7. Foltz DW (1986) Null alleles as a possible cause of heterozygote deficiency in the oyster Crassostrea virginica. Biochem Genet 24:941–956PubMedCrossRefGoogle Scholar
  8. France SC (1994) Genetic population structure and gene flow among deep-sea amphipods, Abyssorchomene spp., from six California Continental Borderland basins. Mar Biol 118:67–77CrossRefGoogle Scholar
  9. Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297PubMedCrossRefGoogle Scholar
  10. Highsmith RC (1982) Reproduction by fragmentation in corals. Mar Ecol-Prog Ser 7:207–226CrossRefGoogle Scholar
  11. Hillis DM, Moritz C, Mable BK (1996) Molecular systematics, 2nd edn. Sinauer, SunderlandGoogle Scholar
  12. López-Victoria M, Zea S (2004) Storm-mediated coral colonization by an excavating Caribbean sponge. Climate Res 26:251–256CrossRefGoogle Scholar
  13. Maldonado M, Uriz MJ (1999a) An experimental approach to the ecological significance of microhabitat-scale movement in an encrusting sponge. Mar Ecol Prog Ser 185:239–255CrossRefGoogle Scholar
  14. Maldonado M, Uriz MJ (1999b) Sexual propagation by sponge fragments. Nature 398:476CrossRefGoogle Scholar
  15. Manchenko GP (1994) Handbook of detection of enzymes on electrophoresis gels. CRC Press Inc, Ann ArborGoogle Scholar
  16. Maynard-Smith J (1992) Age and the unisexual lineage. Nature 356:661–662CrossRefGoogle Scholar
  17. Miller K, Alvarez B, Battershill C, Northcote P, Parthasarathy H (2001) Genetic, morphological, and chemical divergence in the sponge genus Latrunculia (Porifera: Demospongiae) from New Zealand. Mar Biol 139:235–250CrossRefGoogle Scholar
  18. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  19. Pang RK (1973) The ecology of some Jamaican excavating sponges. B Mar Sci 23:227–243Google Scholar
  20. Rose CS, Risk MJ (1985). Increase in Cliona delitrix infestation of Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. PSZNI Mar Ecol 6:345–363CrossRefGoogle Scholar
  21. Rützler K (2002) Impact of crustose clionid sponges on Caribbean Reef corals. Acta Geologica Hispanica 37:61–72Google Scholar
  22. Schönberg CHL (2001) Estimating the extent of endolithic tissue of a clionid Great Barrier Reef sponge. Senckenbergiana maritima 31:29–39CrossRefGoogle Scholar
  23. Schönberg CHL, Wilkinson CR (2001) Induced colonization of corals by a clionid bioeroding sponge. Coral Reefs 20:69–76CrossRefGoogle Scholar
  24. Simpson TL (1984) The cell biology of sponges. Springer, Berlin Heidelberg New YorkGoogle Scholar
  25. Solé-Cava AM, Thorpe JP (1986) Genetic differentiation between morphotypes of the marine sponge Suberites ficus (Demospongiae: Hadromerida). Mar Biol 93:247–253CrossRefGoogle Scholar
  26. Solé-Cava AM, Thorpe JP (1991) High levels of genetic variation in natural populations of marine lower invertebrates. Biol J Linn Soc 44:65–80CrossRefGoogle Scholar
  27. Solé-Cava AM, Boury-Esnault N (1999) Patterns of intra and interspecific genetic divergence in marine sponges. Mem Queensl Mus 44:591–601Google Scholar
  28. Thorpe JP, Solé-Cava AM (1994) The use of electrophoresis in invertebrate systematics. Zool Scr 23:3–18CrossRefGoogle Scholar
  29. Tunnicliffe V (1981) Breakage and propagation of the stony coral, Acropora cervicornis. P Nat Acad Sci USA 78:2427–2431CrossRefGoogle Scholar
  30. Wallace B (1981) Basic population genetics. Columbia University Press, NYGoogle Scholar
  31. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  32. Zouros E, Foltz DW (1984) Possible explanation of heterozygote deficiency in bivalve mollusks. Malacologia 25:583–591Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratório de Biodiversidade Molecular, Department Genética, Institute BiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of Operational Marine SciencesCentro de Estudios Avanzados de Blanes (CSIC)GironaSpain

Personalised recommendations