Coral Reefs

, Volume 25, Issue 1, pp 23–36 | Cite as

The effect of water exchange on bacterioplankton depletion and inorganic nutrient dynamics in coral reef cavities

  • F. C. van Duyl
  • S. R. Scheffers
  • F. I. M. Thomas
  • M. Driscoll


We studied the effect of water exchange on the depletion (or accumulation) of bacterioplankton, dissolved organic matter and inorganic nutrients in small open framework cavities (50–70 l) at 15 m depth on the coral reef along Curaçao, Netherlands Antilles. The bacterioplankton removal rate in cavities increased with increasing water exchange rates up to a threshold of 0.0045 s−1, reaching values of 50–100 mg C m−2 total interior cavity surface area (CSA) per day. Beyond the threshold, bacterioplankton removal dropped. The cryptic community is apparently adapted to the average water exchange in these cavities (0.0041 s−1). Dissolved inorganic nitrogen (DIN), nitrate + nitrite (NO x ) in particular, accumulated in cavity water and the accumulation decreased with increasing water exchange. Net NO x effluxes exceeded net DIN effluxes from cavities (average efflux rate of 1.9 mmol NO x vs. 0.8 mmol DIN m−2 interior CSA per day). The difference is ascribed to net ammonium losses (NH4) in cavities at reef concentrations >0.025 μM NH4, possibly due to enhanced nitrification. Dissolved inorganic phosphate accumulated in cavities, but was not related to water exchange. The cryptic biota in cavities depend on water exchange for optimization of consumption of bacterioplankton and removal of inorganic nitrogen. Coral cavities are an evident sink of bacterioplankton and a source of NO x and PO 4 3− .


Coral cavity Water exchange coefficient Bacterioplankton removal Nutrient regeneration DOC Cryptic biota 



We thank the CARMABI Ecological Institute staff (Curaçao, Netherlands Antilles) for their hospitality and support for this project. The National Science Foundation (NSF) grant to F.I.M. Thomas (OCE−9996361) is acknowledged. The study was funded by the Netherlands Foundation for the Advancement of Tropical Research (WOTRO grant W84–439).


  1. Andrews JC, Müller H (1983) Space-time variability of nutrients in a lagoonal patch reef. Limnol Oceanogr 28:215–227Google Scholar
  2. Atkinson MJ, Bilger RW (1992) Effects of water velocity on phosphate uptake in coral reef-flat communities. Limnol Oceanogr 37:273–279Google Scholar
  3. Ayukai T (1995) Retention of phytoplankton and planktonic microbes on coral reefs within the Great Barrier Reef, Australia. Coral Reefs 14:141–147CrossRefGoogle Scholar
  4. Baird ME, Atkinson MJ (1997) Measurement and prediction of mass transfer to experimental coral reef communities. Limnol Oceanogr 42:1685–1693Google Scholar
  5. Buss LW, Jackson JBC (1981) Planktonic food availability and suspension-feeder abundance: evidence of in situ depletion. J Exp Mar Biol Ecol 49:151–161CrossRefGoogle Scholar
  6. Capone DG, Dunham SE, Horrigan SG, Duguay LE (1992) Microbial nitrogen transformations in unconsolidated coral reef sediments. Mar Ecol Prog Ser 80:75–88CrossRefGoogle Scholar
  7. Carlson CA, Giovannoni SJ, Hansell DA, Goldberg SJ, Parsons R, Otero MP, Vergin K, Wheeler BR (2002) Effects of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea. Aquat Microb Ecol 30:19–36CrossRefGoogle Scholar
  8. Coma R, Ribes M, Gili J-M, Hughes RN (2001) The ultimate opportunists: consumers of seston. Mar Ecol Prog Ser 219:305–308CrossRefGoogle Scholar
  9. Corredor JE, Wilkinson CR, Vicente VP, Morell JM, Otero E (1988) Nitrate release by Caribbean reef sponges. Limnol Oceanogr 33:114–120Google Scholar
  10. Crossland CJ, Hatcher BG, Smith SV (1991) Role of coral reefs in global ocean production. Coral Reefs 10:55–64CrossRefGoogle Scholar
  11. Diaz MC, Ward BB (1997) Sponge mediated nitrification in tropical benthic communities. Mar Ecol Prog Ser 156:97–107CrossRefGoogle Scholar
  12. Duckworth AR, Samples GA, Wright AE, Pomponi SA (2003) In Vitro culture of the tropical sponge Axinella corrugata (Demospongiae): effect of food cell concentration on growth, clearance rate, and biosynthesis of stevensine. Mar Biotechnol 5:519–527PubMedCrossRefGoogle Scholar
  13. Fabricius KE, Genin A, Benayahu Y (1995) Flow-dependent herbivory and growth in zooxathellae-free soft corals. Limnol Oceannogr 40:1290–1301Google Scholar
  14. Fisher H (2003) The role of biofilms in the uptake and transformation of dissolved organic matter. In: Elsevier Science (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Elsevier Science, Amsterdam, pp 285–313Google Scholar
  15. Fréchette M, Butman CA, Geyer WR (1989) The importance of boundary-layer flows in supplying phytoplankton to the benthic suspension feeder, Mytilus edulis L. Limnol Oceanogr 34:19–36Google Scholar
  16. Fukuda R, Ogawa H, Nakata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microb 64:3352–3358Google Scholar
  17. Gast GJ, Wiegman S, Wieringa E, Van Duyl FC, Bak RPM (1998) Bacteria in coral reef water types: removal of cells, stimulation of growth and mineralization. Mar Ecol Prog Ser 167:37–45CrossRefGoogle Scholar
  18. Gast GJ, Jonkers PJ, Van Duyl FC, Bak RPM (1999) Bacteria, flagellates and nutrients in island fringing coral reef waters: influence of the ocean, the reef and eutrophication. Bull Mar Sci 65:523–538Google Scholar
  19. Gili J-M, Coma R (1998) Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol Evol 13:316–321CrossRefGoogle Scholar
  20. Ginsburg RN (1983) Geological and biological roles of cavities in coral reefs. In: Barnes DJ (eds) Perspectives on coral reefs. Australian Institute of Marine Science, Townsville, pp 148–153Google Scholar
  21. Grant WD, Madsen OS (1979) Combined wave and current interaction with a rough bottom. J Geophys Res 84:1797–1808CrossRefGoogle Scholar
  22. Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis. Wiley-VCH, GermanyGoogle Scholar
  23. Helder W, De Vries RTP (1979) An automatic phenol-hypochlorite method for determination of ammonia in sea- and brackish waters. Neth J Sea Res 13:154–160CrossRefGoogle Scholar
  24. Hopkinson CS Jr, Sherr BF, Ducklow HW (1987) Microbial regeneration of ammonium in the water column of Davies Reef, Australia. Mar Ecol Prog Ser 41:147–153CrossRefGoogle Scholar
  25. Jørgensen CB (1976) August Putter, August Krogh, and modern ideas on the use of dissolved organic matter in aquatic environments. Biol Rev 51:291–328CrossRefGoogle Scholar
  26. Kays WM, Crawford ME (1993) Convective heat and mass-transfer. Mcgraw-Hill Science/Engineering/MathGoogle Scholar
  27. Kirchman DL (2000) Uptake and regeneration of inorganic nutrients by marine heterotrophic bacteria. In: Kirchman DL (eds) Microbial ecology of the oceans. Wiley-Liss, New York, pp 261–288Google Scholar
  28. Kobluk DR, Van Soest RWM (1989) Cavity-dwelling sponges in a southern Caribbean coral reef and their paleontological implications. Bull Mar Sci 44:1207–1235Google Scholar
  29. Kötter I (2003) Feeding ecology of coral reef sponges. PhD thesis, Universität Bremen, BremenGoogle Scholar
  30. Kötter I, Pernthaler J (2002) In situ feeding rates of obligate and facultative coelobite (cavity-dwelling) sponges in a Caribbean coral reef. In: Proceedings of 9th Int Coral Reef Symp, Bali 1:347–352Google Scholar
  31. Murphy J, Riley J (1962) A modified single method for determination of phosphate in natural water. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  32. Rasheed M, Badran MI, Richter C, Hüttel M (2002) Effect of reef framework and bottom sediment on nutrient enrichment in a coral reef of the Gulf of Aqaba, Red Sea. Mar Ecol Prog Ser 239:277–285CrossRefGoogle Scholar
  33. Reiswig HM (1971a) In situ pumping activities of tropical Demospongiae. Mar Biol 9:38–50CrossRefGoogle Scholar
  34. Reiswig HM (1971b) Particle feeding in natural populations of three marine demosponges. Biol Bull 141:568–591CrossRefGoogle Scholar
  35. Ribes M, Coma R, Gili J-M (1999) Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratidae) throughout an annual cycle. Mar Ecol Prog Ser 176:179–190CrossRefGoogle Scholar
  36. Richter C, Wunsch M (1999) Cavity-dwelling suspension feeders in coral reefs—a new link in reef trophodynamics. Mar Ecol Prog Ser 188:105–116CrossRefGoogle Scholar
  37. Richter C, Wunsch M, Rasheed M, Kötter I, Badran MI (2001) Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413:726–730PubMedCrossRefGoogle Scholar
  38. Riisgård HU, Larsen PS (1995) Filter-feeding in marine macro-invertebrates: pump characteristics, modelling and energy cost. Biol Rev 70:67–106CrossRefGoogle Scholar
  39. Scheffers SR (2005) Benthic-pelagic coupling in coral reefs: interaction between framework cavities and reef water. PhD thesis, University of AmsterdamGoogle Scholar
  40. Scheffers SR, De Goeij JM, Van Duyl FC, Bak RPM (2003) The cave-profiler: a simple tool to describe the 3D structure of inaccessible coral reef cavities. Coral Reefs 22:49–53Google Scholar
  41. Scheffers SR, Nieuwland G, Bak RPM, Van Duyl FC (2004) Removal of bacteria and nutrient dynamics within the coral reef framework of Curaçao (Netherlands Antilles). Coral Reefs 23:413–422CrossRefGoogle Scholar
  42. Sebens KP, Grace SP, Helmuth B, Maney EJ Jr, Miles JS (1998) Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites in a field enclosure. Mar Biol 131:347–360CrossRefGoogle Scholar
  43. Sharp JH, Carlson CA, Peltzer ET, Castle-Ward DM, Savidge KB, Rinker KR (2002) Final dissolved organic carbon broad community intercalibration and preliminary use of DOC reference material. Mar Chem 77:239–253CrossRefGoogle Scholar
  44. Sterner RW, Elser JJ (2002) How to build an animal: the stoichiometry of Metazoans. In: Sterner RW, Elser JJ (eds) Ecological stoichiometry. The biology of elements from molecules to the biosphere. Princeton University Press, Princeton, pp 135–178Google Scholar
  45. Szmant-Froelich A (1983) Functional aspects of nutrient cycling in coral reefs. NOAA Symp Ser Undersea Res 1:133–139Google Scholar
  46. Thomas FIM, Atkinson MJ (1997) Ammonium uptake of coral reefs: effects of water velocity and surface roughness on mass transfer. Limnol Oceanogr 42:81–88Google Scholar
  47. Thomas FIM, Cornelisen CD, Zande JM (2000) Effects of water velocity and canopy morphology on ammonium uptake by seagrass communities. Ecology 81:2704–2713Google Scholar
  48. Tribble GW, Sansoné FJ, Li Y-H, Smith SV, Buddemeier RW (1988) Material fluxes from a reef framework. In: Proceeding of 6th Int Coral Reef Symp, Australia, 2:577–582Google Scholar
  49. Tribble GW, Sansoné FJ, Smith SV (1990) Stoichiometric modeling of carbon digenesis within a coral reef framework. Geochim Cosmochim Acta 54:2439–2449CrossRefGoogle Scholar
  50. Van Duyl FC, Gast GJ (2001) Linkage of small-scale spatial variations in DOC, inorganic nutrients, and between bacterioplankton growth with different coral reef water types. Aquat Microb Ecol 24:17–26CrossRefGoogle Scholar
  51. Van Duyl FC, Gast GJ, Steinhoff W, Kloff S, Veldhuis MJW, Bak RPM (2002) Factors influencing the short-term variation in phytoplankton composition and biomass in coral reef water. Coral Reefs 21:293–306Google Scholar
  52. Webb KL, DuPaul WD, Wiebe W, Sottile W, Johannes RE (1975) Enewetak (Eniwetok) Atoll: aspects of the nitrogen cycle on a coral reef. Limnol Oceanogr 20:198–210CrossRefGoogle Scholar
  53. Wild C, Hüttel M, Klüter A, Kremb SG, Rasheed MYM, Jørgensen BB (2004) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70PubMedCrossRefGoogle Scholar
  54. Wildish D, Kristmanson D (1997) Benthic suspension feeders and flow. Cambridge University Press, CambridgeGoogle Scholar
  55. Wunsch M, Richter C (1998) The CaveCam—an endoscopic underwater video system for the exploration of cryptic habitats. Mar Ecol Prog Ser 169:277–282CrossRefGoogle Scholar
  56. Wunsch M, Al-Moghrabi SM, Kötter I (2002) Communities of coral reef cavities in Jordan, Gulf of Aqaba (Red Sea). In: Proc 9th Int Coral Reef Symp, Bali, 1:595–600Google Scholar
  57. Yahel G, Post AF, Fabricius K, Vaulot DM, Vaulot D, Genin A (1998) Phytoplankton distribution and grazing near coral reefs. Limnol Oceanogr 43:551–563CrossRefGoogle Scholar
  58. Yahel G, Sharp JH, Marie D, Hase C, Genin A (2003) In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC in the major source for carbon. Limnol Oceannogr 48:141–149Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • F. C. van Duyl
    • 1
  • S. R. Scheffers
    • 1
    • 2
  • F. I. M. Thomas
    • 3
  • M. Driscoll
    • 3
  1. 1.Royal Netherlands Institute for Sea ResearchDen Burg, TexelThe Netherlands
  2. 2.Carmabi Ecological Institute, Piscadera BayWillemstad, CuraçaoNetherlands Antilles
  3. 3.University of South FloridaTampaUSA

Personalised recommendations