Advertisement

Coral Reefs

, Volume 24, Issue 1, pp 103–111 | Cite as

Amplified fragment length polymorphism (AFLP) analysis indicates the importance of both asexual and sexual reproduction in the fissiparous holothurian Stichopus chloronotus (Aspidochirotida) in the Indian and Pacific Ocean

  • S. Uthicke
  • C. Conand
Report

Abstract

Asexual reproduction in the fissiparous holothurian species Stichopus chloronotus from eight populations between Madagascar and the Great Barrier Reef (total N=149) was investigated using Amplified fragment length polymorphism (AFLP) markers; and results compared to previous allozyme studies. Specifically, we tested the hypotheses that (1) genetic diversity in this species is reduced in the West Indian Ocean and that (2) some populations rely nearly exclusively on asexual reproduction. Using 21 polymorphic markers (obtained by two primer combinations) resulted in 51 genotypes in the whole sample, with up to 20 individuals (nearly all within populations) having the same genotype. These repeated genotypes most likely represent clones. In most populations, more than 50% of individuals were inferred to result from asexual reproduction. In two extreme populations, both of which are comprised nearly entirely of male individuals (Great Palm Island, Trou d’eau), only up to 20% of all individuals were sexually produced. Although, the genetic diversity in two populations of La Réunion was reduced, the fact that diversity is high in a third population and on Madagascar showed that low genetic diversity in S. chloronotus is not a general feature of the West Indian Ocean. Cluster analysis using Rogers’ genetic distance did not result in distinct geographic clusters. This supports previous suggestions that although asexual reproduction is important for the maintenance of populations, large distance dispersal of sexually produced larvae provides the genetic link between populations.

Keywords

Amplify Fragment Length Polymorphism Sexual Reproduction Great Barrier Reef Asexual Reproduction Amplify Fragment Length Polymorphism Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was partially funded by support from the French Ministry of Foreign Affairs. The MS greatly improved by comments from M. van Oppen and two anonymous referees.

References

  1. Amsellem L, Noyer JL, Le Bourgeois T, Hosseart-McKey M (2000) Comparison of genetic diversity of the invasive weed Rubus alceifolius Poir. (Rosaceae) in its native range and areas of introduction, using amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:443–455CrossRefPubMedGoogle Scholar
  2. Arroyo Garcia R, Martinez Zapater J, Garcia Criado B, Zabalgogeazcoa I (2002) Genetic structure of natural populations of the grass endophyte Epichloe festucae in semiarid grasslands. Mol Ecol 11:355–364CrossRefPubMedGoogle Scholar
  3. Barki Y, Douek J, Graur D, Gateno D, Rinkevich B (2000) Polymorphism in soft coral larvae revealed by amplified fragment-length polymorphism (AFLP) markers. Mar Biol 136:37–41CrossRefGoogle Scholar
  4. Benzie JAH (1999) Major genetic differences between Crown-of thorns starfish (Acanthaster planci) in the Indian and Pacific Oceans. Evolution 53:1782–1795Google Scholar
  5. Borowsky RL (2001) Estimating nucleotide diversity from random amplified polymorphic DNA and amplified fragment length polymorphism. Mol Phylogenet Evol 18:143–148Google Scholar
  6. Chao S-M, Chen C-P, Alexander PS (1993) Fission and its effect on population structure of Holothuria atra (Echinodermata: Holothuroidea) in Taiwan. Mar Biol 116:109–115Google Scholar
  7. Clark AM, Rowe FWE (1971) Monograph of shallow water Indo-West Pacific Echinoderms. Trustees of the British Museum (Natural History), LondonGoogle Scholar
  8. Colombera D, Lazaretto-Colombera I (1978) Chromosome evolution in some marine invertebrates. In: Battaglia B, Beardmore JA (eds) Marine organisms: genetics, ecology and evolution. Plenum Press, New York, pp 487–525Google Scholar
  9. Conand C (1989) Les holothuries aspidochirotes du lagon de Nouvelle-Calédonie: biologie, écologie et exploitation. Etudes et thèse ORSTOM, ParisGoogle Scholar
  10. Conand C, De Ridder C (1990) Reproduction asexuée par scission chez Holothuria atra (Holothuroidea) dans des populations de platiers récifaux. In: De Ridder C, Dubois P, Lahaye MC, Jangoux M (eds) Echinoderm research. Balkema, Rotterdam, pp 71–76Google Scholar
  11. Conand C, Morel C, Mussard R (1997) A new study of asexual reproduction in holothurians: Fission in Holothuria leucospilota populations on Reunion Island in the Indian Ocean. SPC Beche-de-mer inf Bull 9:5–11Google Scholar
  12. Conand C, Armand J, Dijoux N, Garryer J (1998) Fission in a population of Stichopus chloronotus on Reunion Island, Indian Ocean. SPC Bêche-de mer Inf Bull 10:15–23Google Scholar
  13. Conand C, Uthicke S, Hoareau T (2002) Sexual and asexual reproduction of the holothurian Stichopus chloronotus (Echinodermata): a comparison between La Réunion (Indian Ocean) and east Australia (Pacific Ocean). Invert Reprod Dev 44:235–242Google Scholar
  14. Donaldson SL, Chopin T, Saunders GE (2000) An assessment of the AFLP method for investigating population structure in the red algae Chondrus crispus Stackhouse (Gigartinales, Florideophyceae). J Appl Pycol 12:25–35CrossRefGoogle Scholar
  15. Duke NC, Benzie JAH, Goodall JA, Ballment ER (1998) Genetic structure and evolution of species in the mangrove genus Avicennia (Avicenniaceae) in the Indo-West Pacific. Evolution 52:1612–1626Google Scholar
  16. Ebert TA (1983) Recruitment in echinoderms. In: Jangoux M, Lawrence JS (eds) Echinoderm studies. Balkeema, Rotterdam, pp 169–203Google Scholar
  17. Emson RH, Mladenov PV (1987) Studies of the fissiparous holothurian Holothuria parvula (Selenka) (Echinodermata: Holothuroidea). J Exp Mar Biol Ecol 111:195–211CrossRefGoogle Scholar
  18. Emson RH, Wilkie JC (1980) Fission and autotomy in echinoderms. Oceanogr Mar Biol Ann Rev 18:155–250Google Scholar
  19. Escaravage N, Questiau S, Pornon A, Doche B, Taberlet P (1998) Clonal diversity in a Rhododendron ferrugineum L. (Ericaceae) population inferred from AFLP markers. Mol Ecol 7:975–982CrossRefGoogle Scholar
  20. Hald J (1952) Statistical theory with engineering applications. Wiley, New YorkGoogle Scholar
  21. Jackson JBC (1985) Distribution and ecology of clonal and aclonal benthic invertebrates. In: Jackson JBC, Buss LW, Cook RW (eds) Population biology and evolution of clonal organisms. Yale University Press, New Haven and London, pp 297–355Google Scholar
  22. Johnson MS, Threlfall TJ (1987) Fissiparity and population genetics of Coscinasterias calamaria. Mar Biol 93:517–525Google Scholar
  23. Krauss SL (1999) Complete exclusion of nonsires in an analysis of paternity in a natural plant population using amplified fragment length polymorphism (AFLP). Mol Ecol 8:217–226CrossRefGoogle Scholar
  24. Kusumo HT, Druehl LD (2000) Variability over space and time in the genetic structure of the winged kelp Alaria marginata. Mar Biol 136:397–409CrossRefGoogle Scholar
  25. Lawrence JM, Herrera J (2000) Stress and deviant reproduction in echinoderms. Zoolog Stud 39:151–171Google Scholar
  26. Lessios HA, Kessing BD, Robertson DR, Paulay G (1999) Phylogeography of the pantropical sea urchin Eucidaris in relation to land barriers and ocean currents. Evolution 53:806–817Google Scholar
  27. Lynch M, Milligan BG (1994) Anlysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99PubMedGoogle Scholar
  28. McFadden CS (1997) Contributions of sexual and asexual reproduction to population structure in the clonal soft coral Alcyonium rudyi. Evolution 51:112–125Google Scholar
  29. Miller MP (1997) Tools for population genetic analyses (TFPGA 1.3): a windows programme for the analyses of allozyme and molecular population genetic data. Computer software distributed by author. Source: the internetGoogle Scholar
  30. Montaggioni L, Faure G (1980) Les récifs coralliens des Mascareignes (O. Indien). Coll Trav Centre Univ, Univ française de l’ocean indien, pp 1–151Google Scholar
  31. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394CrossRefPubMedGoogle Scholar
  32. Nei M, Maruyama T, Chakraborty R (1975). The bottleneck effect and genetic variability in populations. Evolution 29:1–10Google Scholar
  33. O’Hanlon PC, Peakall R, Briese DT (1999) Amplified fragment length polymorphism (AFLP) reveals introgression in weedy Onopordum thistles: hybridization and invasion. Mol Ecol 8:1239–1246CrossRefPubMedGoogle Scholar
  34. Paul S, Wachira FN, Powell W, Waugh R (1997) Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by ALFP markers. Theor Appl Genet 94:255–263Google Scholar
  35. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283Google Scholar
  36. Ribeiro MM, Mariette S, Vendramin GG, Szmidt AE, Plomion C, Kremer A (2002) Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data. Mol Ecol 11:869–877CrossRefPubMedGoogle Scholar
  37. Rogers JS (1972) Measures of genetic similarity and genetic distance. Studies in Genetics VII, University of Texas Publication No. 7213, Austin, pp 145–154Google Scholar
  38. Schneider M, Beukeboom L, Driessen G, Lapchin L, Bernstein C, Van Alphen J (2002) Geographical distribution and genetic relatedness of sympatrical thelytokous and arrhenotokous populations of the parasitoid Venturia canescens (Hymenoptera). J Evol Biol 15:191–200CrossRefGoogle Scholar
  39. Uthicke S (1994) Distribution patterns and growth of two reef flat holothurians, Holothuria atra and Stichopus chloronotus. In: David B, Guille A, Féral JP, Roux M (eds) Echinoderms through time: proceedings of the 8th international echinoderm conference, Dijon, AA Balkema, Rotterdam, pp 569–576Google Scholar
  40. Uthicke S (1997) The seasonality of asexual reproduction in Holothuria (Halodeima) atra, Holothuria (Halodeima) edulis and Stichopus chloronotus (Holothuroidea: Aspidochirotida) on the Great Barrier Reef. Mar Biol 129:435–441CrossRefGoogle Scholar
  41. Uthicke S (1998) Respiration of Holothuria (Halodeima) atra, Holothuria (Halodeima) edulis and Stichopus chloronotus: intact individuals and products of asexual reproduction (Echinoderms: San Francisco). In: Mooi R, Telford M (eds) Proceedings of the 9th international echinoderm conference, Balkema, Rotterdam, pp 531–536Google Scholar
  42. Uthicke S (2001a) The influence of asexual reproduction on the structure and dynamics of Holothuria (Halodeima) atra and Stichopus chloronotus populations of the Great Barrier Reef. J Mar Freshw Res 52:1–11Google Scholar
  43. Uthicke S (2001b) Interactions between sediment-feeders and microalgae on coral reefs: grazing losses versus production enhancement. Mar Ecol Prog Ser 210:125–138Google Scholar
  44. Uthicke S, Benzie JAH (2001) Restricted gene flow between Holothuria scabra (Echinodermata: Holothuroidea) populations along the north-east coast of Australia and the Solomon Islands. Mar Ecol Prog Ser 216:109–117Google Scholar
  45. Uthicke S, Benzie JAH (2002) A genetic fingerprint recapture technique for measuring growth in ‘unmarkable’ invertebrates: negative growth in commercially fished holothurians (Holothuria nobilis). Mar Ecol Prog Ser 241:221–226Google Scholar
  46. Uthicke S, Benzie JAH, Ballment E (1998) Genetic structure of fissiparous populations of Holothuria (Halodeima) atra on the Great Barrier Reef. Mar Biol 132:141–151CrossRefGoogle Scholar
  47. Uthicke S, Benzie JAH, Ballment E (1999) Population genetics of the fissiparous holothurian Stichopus chloronotus (Aspidochirotida) on the Great Barrier Reef, Australia. Coral Reefs 18:123–132CrossRefGoogle Scholar
  48. Uthicke S, Conand C, Benzie JAH (2001) Population genetics of the fissiparous holothurians Stichopus chloronotus and Holothuria atra (Aspidochirotida): a comparison between the Torres Strait and La Réunion. Mar Biol 139:257–265CrossRefGoogle Scholar
  49. Uthicke S, Purcel S (2004) Preservation of genetic diversity in restocking of the sea cucumber Holothuria scabra investigated by allozyme electrophoresis. Can J Fish Aqu Sci 61:519–528CrossRefGoogle Scholar
  50. Van der Hulst RGM, Mes THM, Den Nijs JCM, Bachmann K (2000) Amplified fragment length polymorphism (AFLP) markers reveal that population structure of triploid dandelions (Taraxacum officinale) exhibits both clonality and recombination. Mol Ecol 9:1–8CrossRefPubMedGoogle Scholar
  51. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedGoogle Scholar
  52. Waycott M, Barnes PAG (2001) AFLP diversity within and between populations of the Caribbean seagrass Thalassia testudinum (Hydrocharitaceae). Mar Biol 139:1021–1028CrossRefGoogle Scholar
  53. Williams ST, Benzie JAH (1998) Evidence of a biogeographic break between populations of a high dispersal starfish: congruent regions within the Indo-west Pacific defined by color morphs, mtDNA, and allozyme data. Evolution 52:87–99Google Scholar
  54. Wilson K, Li Y, Whan V, Lehnert S, Byrne K, Moore S, Pongsomboon S, Tassanakajon A, Rosenberg G, Ballment E, Fayazi Z, Swan J, Kenway M, Benzie J. (2002) Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphisms. Aquaculture 204:297–309CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Australian Institute of Marine ScienceTownsvilleAustralia
  2. 2.ECOMARUniversité de La RéunionSaint DenisFrance

Personalised recommendations