Coral Reefs

, Volume 23, Issue 3, pp 423–432 | Cite as

A new method for measuring growth and age in the precious red coral Corallium rubrum (L.)

  • C. Marschal
  • J. GarrabouEmail author
  • J. G. Harmelin
  • M. Pichon


A new technique for aging red coral Corallium rubrum (L.) colonies based on staining the organic matrix found in the axial calcareous skeleton is presented and validated. This method provided clear-cut images of growth rings of red coral. To demonstrate their annual periodicity, two approaches have been used: (i) applying this technique to adult colonies of known age (more than 20 years old), and (ii) labeling colonies with calcein and allowing them to grow for 1 year. Results provided evidence of the annual periodicity of growth rings. This new method assesses colony age with an underestimate of true age by 3–4 years. The difference between estimated age and actual age could be attributed to the phase of initial growth during which rings are not formed. Colonies from different sites, depths, and habitats (n=33) were analyzed yielding preliminary data on longevity and mean growth rates in red coral. Colonies from shallow habitats (15–62 m) examined here with basal diameter of about 7 mm were at least 30–40 years old. Mean growth rate of basal diameter was 0.35±0.15 mm year−1. Comparison with previous aging methods used for red coral resulted in considerable differences in estimations of age (about 10 years greater in this study) and growth rates (about four times lower). The application of this method to red coral will provide key data as a basis for developing management and conservation plans for this valuable species.


NW Mediterranean Red coral Corallium rubrum Growth rings Longevity Growth rates Sclerochronology Octocoral 



We thank B. de Ligondes and R. Graille for their help in the field work, ensuring excellent safety conditions during diving. We also thank Prof. D. Allemand, Dr. R. Grigg, and an anonymous reviewer for their comments on the manuscript. J. Garrabou was funded by a fellowship from the Société de Secours des Amis des Sciences. This study was partially funded by the Institut Français de la Biodiversité and by the Environment Department of the TotalFinaElf group.

Literature cited

  1. Abbiati M, Novelli S, Santangelo G (1992) Harvesting, predation and competition effects on a red coral population. Neth J Sea Res 30:219–228CrossRefGoogle Scholar
  2. Allemand D, Grillo MC (1990) La biocalcification chez le corail rouge, Corallium rubrum, Part 2: Approches biochimique et physiologique. Rapp Comm Int Mer Médit 32:148Google Scholar
  3. Allemand D (1993) The biology and skeletogenesis of the Mediterranean red coral: A review. Precious Corals Octocoral Res 2:19–39Google Scholar
  4. Allemand D, Grillo MC (1992) Biocalcification mechanism in gorgonians: 45Ca uptake and deposition by the Mediterranean red coral Corallium rubrum. J Exp Zool 262:237–246Google Scholar
  5. Allemand D, Cuif JP, Watabe N, Oishi M, Kawagushi T (1994) The organic matrix of skeletal structures of the red coral, Corallium rubrum. Bull Inst Océanogr (Monaco) 14:129–140Google Scholar
  6. Andrews AH, Cordes EE, Mahoney MM, Munk K, Coale KH, Cailliet GM, Heifetz J (2002) Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resdaeformis) from the Gulf of Alaska. Hydrobiologia 471:101–110CrossRefGoogle Scholar
  7. Barletta G, Marchetti R, Vighi M (1968) Ricerche sul corallo rosso, Part IV: Ulteriori osservazioni sulla distribuzione del corallo rosso nel Tirreno. Istituto Lombardo RCB 102:119–144Google Scholar
  8. Barnes DJ, Lough JM (1993) On the nature and causes of density banding in massive coral skeletons. J Exp Mar Biol Ecol 167:91–108CrossRefGoogle Scholar
  9. Barnes DJ, Lough JM (1996) Coral skeletons: storage and recovery of environmental information. Global Change Biol 2:569–582Google Scholar
  10. Begon M, Harper JL, Townsend CR (1987) Ecology. Individuals populations and communities. Blackwell Scientific Publications, OxfordGoogle Scholar
  11. Brazeau DA, Lasker HR (1992) Growth rates and growth strategy in a colonial marine invertebrate, the octocoral Briareum asbestinum. Biol Bull 183:269–277Google Scholar
  12. Carpine C, Grasshoff M (1975) Les gorgonaires de la Méditerranée. Bull Inst Océanogr (Monaco) 71(1430):1–140Google Scholar
  13. Caswell H (2001) Matrix population models. construction, analysis and interpretation. Sinauer Associates Publishers, Sunderland, MAGoogle Scholar
  14. Cerrano C, Bavestrello G, Bianchi CN, Catteneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (NW Mediterranean), Summer 1999. Ecol Lett 3:284–293CrossRefGoogle Scholar
  15. Charbonnier D, Garcia S (1984) Consultation on red coral resources of the western Mediterranean and their rational exploitation. Palma de Mallorca, Spain, 13–16 December 1983. FAO Fisheries Report 306:1–142Google Scholar
  16. Chintiroglou H, Dounas C, Koukouras A (1989) The presence of Corallium rubrum (Linnaeus, 1758) in the eastern Mediterranean Sea. Mitt Zool Mus Berlin 65:145–149Google Scholar
  17. Coma R, Ribes M, Zabala M, Gili JM (1998) Growth in a modular colonial marine invertebrate. Est Coastal Shelf Sci 47:459–470CrossRefGoogle Scholar
  18. Coma R, Ribes M, Zabala M, Gili JM (2000) Seasonality in coastal benthic ecosystems. Trends Ecol Evol 15(11):448–453CrossRefPubMedGoogle Scholar
  19. Dantan JL (1928) Recherches sur la croissance du corail rouge Corallium rubrum Lamarck. Bull Soc Zool France 53(1):42–46Google Scholar
  20. Duarte CM, Agusti S, Kennedy H, Vaqué D (1999) The Mediterranean climate as a template for Mediterranean marine ecosystems: The example of the northeast Spanish littoral. Prog Oceanogr 44:245–270CrossRefGoogle Scholar
  21. Evans MN, Fairbanks RG, Rubenstone JL (1998) A proxy index of ENSO teleconnections. Nature 394:732–33CrossRefGoogle Scholar
  22. Fritts HC (1966) Growth-rings of trees: their correlation with climate. Science 154:973–979Google Scholar
  23. Garcia-Rodriguez M, Masso C (1986) Algunas bases para la determinacion directa de la edad del coral rojo (Corallium rubrum L). Bol Inst Esp Oceanogr 3(4):65–74Google Scholar
  24. Garrabou J, Perez T, Chevaldonné P, Bensoussan N, Torrents O, Lejeusne C, Romano JC, Vacelet J, Boury-Esnault N, Harmelin-Vivien M, Verlaque M, Boudouresque CF, Harmelin JG (2003) Is global change a real threat for conservation of the NW Mediterranean marine biodiversity? Geophys Res Abstr 5:105–22Google Scholar
  25. Garrabou J, Harmelin JG (2002) A 20-year study on life-history traits of a harvested long-lived temperate coral in the NW Mediterranean: insights into conservation and management needs. J Anim Ecol 71:966–978CrossRefGoogle Scholar
  26. Garrabou J, Perez T, Sartoretto S, Harmelin JG (2001) Mass mortality event in red coral (Corallium rubrum, Cnidaria, Anthozoa, Octocorallia) population in the Provence region (France, NW Mediterranean). Mar Ecol Prog Ser 217:263–272Google Scholar
  27. Grigg RW (1974) Growth rings: Annual periodicity in two gorgonian corals. Ecology 55:876–881Google Scholar
  28. Grillo MC, Goldberg WM, Allemand D (1993) Skeleton and sclerite formation in Mediterranean red coral Corallium rubrum (Linnaeus, 1758). Mar Biol 117:119–128Google Scholar
  29. Harmelin JG (1980) Etablissement des communautés de substrats durs en milieu obscur: Résultats préliminaires d’une expérience à long terme en Méditerranée. Memorie di Biologia Marina e di Oceanografia NS Suppl 10:29–52Google Scholar
  30. Harmelin JG (1984) Biologie du corail rouge. Paramètres de populations, croissance et mortalité naturelle: Etat des connaissances en France. In: Charbonnier D, Garcia S (eds) Rapport de consultation technique du CGPM sur les ressources du corail rouge de la Méditerranée occidentale et leur exploitation rationnelle. FAO Rapport N°306 sur les Pêches, Palma de Mallorca, pp 99–103Google Scholar
  31. Harmelin JG (1985) Organisation spatiale des communautés sessiles des grottes sous-marines de Méditerranée. Rapp Comm int Mer Médit 29:149–153Google Scholar
  32. Harmelin JG, Bellan-Santini D, Boudouresque CF, Le Campion-Alsumard T, Leung Tack K, Salen G (1970) Etude expérimentale de la colonisation des surfaces vierges naturelles en eau pure et en eau polluée, dans la région marseillaise, Part 1: Conditions de l’expérience. Téthys 2:329–334Google Scholar
  33. Hughes TP, Jackson JBC (1985) Population dynamics and life histories of foliaceous corals. Ecol Monogr 55(2):141–166Google Scholar
  34. Kennedy H, Richardson CA, Duarte CM, Kennedy DP (2001) Oxygen and carbon stable isotopic profiles of the fan mussel, Pinna nobilis, and reconstruction of sea surface temperatures in the Mediterranean. Mar Biol 139:1115–1124CrossRefGoogle Scholar
  35. Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270–272Google Scholar
  36. Laborel J, Vacelet J (1961) Répartition bionomique du Corallium rubrum LMCK dans les grottes et falaises sous-marines. Rapp Comm int Mer Médit 16:464–469Google Scholar
  37. Lacaze-Duthiers H (1864) Histoire naturelle du Corail. JB Baillière et fils, ParisGoogle Scholar
  38. Lazareth CE, Willienz P, Navez J, Keppens E, Dehairs F, André L (2000) Sclerosponges as a new potential recorder of environmental changes: lead in Ceratoporella nicholsoni. Geology 28:515–518CrossRefGoogle Scholar
  39. Leversee GJ (1976) Flow and feeding in fan-shaped colonies of the gorgonian coral, Leptogorgia. Biol Bull 151:344–456Google Scholar
  40. Liverino B (1989) Red coral, jewel of the sea. Analisi, BolognaGoogle Scholar
  41. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New YorkGoogle Scholar
  42. Marchetti R (1965) Ricerche sul corallo rosso della costa ligure e toscana, Part II: Il Promontorio di Portofino. Rendiconti, Istituto lombardo, Accademia di scienze e letter, B. Scienze biologiche e mediche 99:279–316Google Scholar
  43. Marin J, Reynal de Saint-Michel L (1981) Premières données biométriques sur le corail rouge, Corallium rubrum Lmck, de Corse. Rapp Comm int Mer Médit 27:171–172Google Scholar
  44. Millstein J, O’Clair CE (2001) Comparison of age-length and growth-increment general growth models of the Schnute type in the Pacific blue mussel, Mytilus trossulus Gould. J Exp Mar Biol Ecol 262:155–176CrossRefPubMedGoogle Scholar
  45. Mistri M, Ceccherelli VU (1994) Growth and secondary production of the Mediterranean gorgonian Paramuricea clavata. Mar Ecol Prog Ser 103:291–296Google Scholar
  46. Patterson MR (1991) Passive suspension feeding by an octocoral in plankton patches: Empirical test of mathematical model. Biol Bull 180:81–92Google Scholar
  47. Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Mar Ecol Prog Ser 185:195–201Google Scholar
  48. Perez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, Vacelet J (2000) Mortalité massive d’invertébrés marins: Un événement sans précédent en Méditerranée nord-occidentale (Mass mortality of marine invertebrates: An unprecedented event in the NW Mediterranean). CR Acad Sci Paris III 323:853–865CrossRefGoogle Scholar
  49. Ros JD, Gili JM, Olivella I (1984) Els sistemes naturals de les Illes Medes. Arxius de la Secció de Ciéncies LXXIII, Insititut d’Estudis Catalans, BarcelonaGoogle Scholar
  50. Santangelo G, Abbiati M, Caforio G (1993) Struttura di etá e dinamica di popolazione di Corallium rubrum (L). In: Cicogna F, Cattaneo-Vietti R (eds) Il Corallo Rosso Mediterraneo: Arte Storia e Scienza (Red coral in the Mediterranean Sea: Art, history and science). Ministero delle Risorse Agricole, Alimentari e Forestali, Roma, pp 131–157Google Scholar
  51. Santangelo G, Bongiorni L, Giannini F, Abbiati M, Buffoni G (1997) Structure analysis of two red coral populations dwelling in different habitats. In: Cicogna F, Bavestrello G, Cattaneao-Vietti R (eds) Red coral and other Mediterranean octocorals: biology and protection. Min Pol Agr Roma, pp 23–43Google Scholar
  52. Vigliola L, Harmelin-Vivien M, Meekan MG (2000) Comparison of techniques of back-calculation of growth and settlement marks from the otoliths of three species of Diplodus from the Mediterranean Sea. Can Fish Aquat Sci 57:1291–1299CrossRefGoogle Scholar
  53. Weinbauer MG, Brandstätter F, Velimirov B (2000) On the potential use of magnesium and strontium concentrations as ecological indicators in the calcite skeleton of the red coral (Corallium rubrum). Mar Biol 137:801–809CrossRefGoogle Scholar
  54. Weinberg S (1978) Mediterranean octocorallian communities and the abiotic environment. Mar Biol 49:41–57Google Scholar
  55. Wheeler AP, Sikes CS (1989) Matrix-crystal interactions in CaCO3 biomineralization. In: Mann S, Webb J, Williams RPJ (eds) Biomineralization: Chemical and biochemical perspectives. VCH Publishers, New York, pp 95–131Google Scholar
  56. Zabala M, Ballesteros E (1989) Surface-dependent strategies and energy flux in benthic marine communities or, why corals do not exist in the Mediterranean. Sci Mar 53:3–17Google Scholar
  57. Zibrowius H, Monteiro-Marques V, Grasshoff M (1984) La répartition du Corallium rubrum dans l’Atlantique (Cnidaria: Anthozoa: Gorgonaria). Téthys 11(2):163–170Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • C. Marschal
    • 1
  • J. Garrabou
    • 1
    Email author
  • J. G. Harmelin
    • 1
  • M. Pichon
    • 2
  1. 1.Centre d’Océanologie de Marseille, UMR-CNRS 6540 DIMARStation Marine d’EndoumeMarseilleFrance
  2. 2.ESA CNRS 8046 “Recifs coralliens”Université PerpignanPerpignan CedexFrance

Personalised recommendations