Coral Reefs

, Volume 22, Issue 4, pp 405–415 | Cite as

Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe

  • C. Rollion-BardEmail author
  • D. Blamart
  • J.-P. Cuif
  • A. Juillet-Leclerc


We have determined the δ18O and δ13C values of azooxanthellate (Lophelia pertusa) and zooxanthellate (Porites lutea) corals at a micrometer scale using an ion microprobe (SIMS—secondary ion mass spectrometry). In P. lutea, centers of calcification are small (10 to 15 μm) and difficult to locate during measurements. In L. pertusa, they are large (50 μm) and arranged in lines of centers of calcification. Our results show that centers of calcification in L. pertusa have a restricted range of variation in δ18O [-2.8±0.3‰ (PDB)], and a larger range in δ13C [14.3 to 10.9‰ (PDB)]. Surrounding skeletal fibers exhibit large isotopic variation both for C and O (up to 12‰), and δ13C and δ18O are positively correlated. The C and O isotopic compositions of the center of calcification deviate from this linear trend at the lightest δ18O values of the surrounding fibers. Ion microprobe results on P. lutea demonstrate also a large range of variation for the δ18O values (up to 10‰). No correlation is found with C isotopes that exhibit, in comparison with L. pertusa, a small range of variation (2‰). This variation of δ18O at a micrometer scale is probably the result of two processes: (1) an isotopic equilibrium calcification with 1 pH unit variation in the calcification fluid as indicated by direct measurements of coelenteron pH in the coral Galaxea fascicularis (Al-Horani et al. 2003) and (2) a kinetic fractionation. The δ13C apparent disequilibrium in P. lutea may be the result of mixing between metabolic CO2 (respiration) and dissolved inorganic carbon (DIC) coming directly from seawater.


Corals Oxygen isotopes Carbon isotopes Ion microprobe Porites lutea Lophelia pertusa 



This study received the financial and scientific support of INSU (Institut National des Sciences de l’Univers) and two funded EC-projects (Geomound and Ecomound). DB thanks Tjeerd van Weering (NIOZ) for providing the Lophelia pertusa sample and environment parameters data and Candace Major for a detailed review of the manuscript. CRB thanks Edouard Bard (Cerege) for providing the Porites lutea sample and Laurie Reisberg for correcting the English. CRB also thanks Marc Chaussidon and Christian France-Lanord (CRPG) for sharing their extensive experience in stable isotopes and ion microprobe with us. This paper benefited from the constructive comments by Dr. P. Swart and three anonymous reviewers. This is CRPG contribution 1663.


  1. Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67:1129–1143CrossRefGoogle Scholar
  2. Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: active internal carbon cycle. J Exp Mar Biol Ecol 288:1–15CrossRefGoogle Scholar
  3. Al-Moghrabi SM, Al-Horani FA, de Beer D (2001) Calcification by the scleractinian coral Galaxea fascicularis: direct measurements on calicoblastic layer using microsensors. In: Proc 8th Int Symp on Biomineralization, 25th–28th November, Kurukawa, Japan, 45 ppGoogle Scholar
  4. Bijma J, Spero HJ, Lea DW (1999) Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results). In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: examples from the South Atlantic. Springer, Berlin Heidelberg New York, pp 489–512Google Scholar
  5. Blamart D, van Weering TCE, Ayliffe L, Labeyrie L, Lutringer, A, Vonhof HB, Ganssen G (2000) Modern NE Atlantic ocean cold water coral characteristics, (abstract), Eos Trans. AGU, 81, 640Google Scholar
  6. Boiseau M, Juillet-leclerc A (1997) H2O2 treatment of recent coral aragonite: oxygen and carbon isotopic implications. Chem Geol 143:171–180CrossRefGoogle Scholar
  7. Castellaro C (1999) Reconstitutions paléoclimatiques et paléoenvironnementales à l’Holocène et au Pléistocène terminal en Nouvelle-Calédonie et aux Seychelles (région indo-pacifique): l’enregistrement par les coraux. PhD Thesis, Univ Aix-Marseille I, FranceGoogle Scholar
  8. Cohen A, Layne GD, Hart SR, Lobel PS (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: implications for the paleotemperature proxy. Paleoceanography 16:20–26Google Scholar
  9. Cuif JP, Dauphin Y (1998) Microstructural and physico-chemical characterisation of centres of calcification in septa of some Scleractinian corals. Pal Zeit 72:257–270Google Scholar
  10. Cuif JP, Dauphin Y, Doucet J, Salome M, Susini J, (2003) XANES mapping of organic sulphate in three Scleractinian coral skeletons. Geochim Cosmochim Acta 67:75–83CrossRefGoogle Scholar
  11. De Chambost E (1997) User’s guide for multicollector Caméca IMS 1270. Caméca, Courbevoie, FranceGoogle Scholar
  12. Deloule E, Chaussidon M, Allé P (1992) Instrumental limitations for isotope measurements with a Caméca ims-3f ion microprobe: example of H, B, S and Sr. Chem Geol 101:187–192CrossRefGoogle Scholar
  13. Emiliani C, Hudson JH, Shinn EA, George RY (1978) Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep-sea coral from Blake Plateau. Science 202:627–629Google Scholar
  14. Erez J (1978) Vital effect on the stable isotope composition seen in foraminifera and coral skeletons. Nature 273:199–202Google Scholar
  15. Freiwald A, Jensen R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund, west Finmark, northern Norway, in cool-water carbonates. In: James NP, Clarke JAD (eds) Special Volume 56, Society for Sedimentary Geology, pp 141–161Google Scholar
  16. Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457PubMedGoogle Scholar
  17. Gaffey S (1988) Water in skeletal carbonates. J Sedim Petrol 58:397–414Google Scholar
  18. Gladfelter EH (1982) Skeletal development in Acropora cerviconis: I. Patterns of calcium carbonate accretion in the axial corallite. Corals Reefs 1:45–51Google Scholar
  19. Goreau TF (1961) On the relation of calcification to primary production in reef-building organisms. In: Lenhoff HH, Loomis WF (eds) The biology of Hydra and some other coleanterates. Univ Miami Press, Miami, pp 269–285Google Scholar
  20. Goreau TJ (1977) Seasonal variations of trace metals and stable isotopes in coral skeleton: physiological and environmental controls. In: Proc 3rd Int Coral Reef Symp, Miami, pp 425–430Google Scholar
  21. Grossman EL, Ku TH (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol 59:59–74Google Scholar
  22. Hidaka M (1991) Fusiform and needle-shaped crystals found on the skeleton of a coral, Galaxea fascicularis. In: Sugo S, Nakaharo H (eds) Mechanism and physiology of biomineralization in biological system. Springer, Berlin Heidelberg New York, pp 139–143Google Scholar
  23. Ireland T (1995) Ion microprobe mass spectrometry: techniques and applications in cosmochemistry, geochemistry, and geochronology. Adv Anal Geochem 2:1–118Google Scholar
  24. Land LS, Lang JC, Barnes DJ (1975) Extension rate: a primary control on the isotopic composition of West Indian (Jamaican) Scleractinian reef coral skeletons. Mar Biol 33:221–233Google Scholar
  25. Le Tissier M d’A (1988) Diurnal pattern of skeleton formation in Pocillopora damicornis (Linnaeus). Coral Reefs 7:81–88Google Scholar
  26. Mahon KI, Harrison TM, McKeegan KD (1998) The thermal and cementation histories of a sandstone petroleum reservoir, Elk Hills, California. Part 2: in situ oxygen and carbon isotopic results. Chem Geol 152:257–271CrossRefGoogle Scholar
  27. McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim Cosmochim Acta 53:163–171Google Scholar
  28. McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857Google Scholar
  29. Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176CrossRefGoogle Scholar
  30. Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition. I. δ13C of zooxanthellae and animal tissue vs depth. Mar Biol 100:185–193Google Scholar
  31. Ogilvie M (1896) Microscopic and systematic study of madreporarian types of corals. R Soc Lond Phil Trans 187(B):83–345Google Scholar
  32. O’Neil JR, Adami LH (1969) The oxygen isotope partition function ratio of water and the structure of liquid water. J Phys Chem 73:1553–1558Google Scholar
  33. Pearse VB (1970) Incorporation of metabolic CO2 into coral skeleton. Nature 406:695–699CrossRefGoogle Scholar
  34. Risk MJ, Sammarco PW, Schwarcz HP (1994) Cross-continental shelf trends in δ13C in coral on the Great Barrier Reef. Mar Ecol Progr Ser 106:121–130Google Scholar
  35. Rollion-Bard C (2001) Variabilité des isotopes de l’oxygène dans les coraux Porites: développement et implications des microanalyses d’isotopes stables (B, C et O) par sonde ionique. PhD Thesis, Institut National Polytechnique de Lorraine, Nancy, France, 165 ppGoogle Scholar
  36. Romanek CS, Grossman EL, Worse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430Google Scholar
  37. Slodzian G, Daigne B, Girard F, Boust F (1987) High sensitivity and high spatial resolution ion probe instrument. In: Benninghoven A, Huber AM, Werner HW (eds) Secondary ion mass spectrometry SIMSVI. Wiley, New York, pp 189–192Google Scholar
  38. Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500CrossRefGoogle Scholar
  39. Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth-Sci Rev 19:51–80Google Scholar
  40. Swart PK, Leder JJ, Szmant AM, Dodge RE (1996) The origin of variations in the isotopic records of Scleractinian corals: II. Carbon. Geochim Cosmochim Acta 60:2871–2885Google Scholar
  41. Urey HC, Lowenstam HA, Epstein S, McKinney CR (1951) Measurements of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Bull Geol Soc Am 62:399–416Google Scholar
  42. Usdowski E, Hoefs J (1993) Oxygen isotope exchange between carbonic acid, bicarbonate, carbonate, and water: a re-examination of the data of McCrea (1950) and an expression for the overall partitioning of oxygen isotopes between the carbonate species and water. Geochim Cosmochim Acta 57:3815–3818Google Scholar
  43. Usdowski E, Michaelis J, Böttcher ME, Hoefs J (1991) Factors for the oxygen isotope equilibrium between aqueous and gaseous CO2, carbonic acid, bicarbonate, carbonate, and water (19 °C). Zeit Phys Chem 170:237–249Google Scholar
  44. Vengosh A, Kolodny Y, Starinsky A, Chivas AR, McCulloch MT (1991) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta 55:2901–2910CrossRefGoogle Scholar
  45. Weber JN (1973) Deep-sea aheurtement scleractinian coral: isotopic composition of skeleton. Deep-sea Res 20:901–909Google Scholar
  46. Weber JN, Woodhead MJ (1970) Carbon and oxygen isotope fractionation in the skeletal carbonate reef-building corals. Chem Geol 6:93–117CrossRefGoogle Scholar
  47. Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on invertebrate paleontology, volu F: Coelenterata. Geol Soc of Am, Univ of Kansas Press, Lawrence, pp 353–367Google Scholar
  48. Zeebe RE (1999) An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochim Cosmochim Acta 63:2001–2007CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • C. Rollion-Bard
    • 1
    Email author
  • D. Blamart
    • 2
  • J.-P. Cuif
    • 3
  • A. Juillet-Leclerc
    • 2
  1. 1. BP 20CRPG-CNRSVandoeuvre-lès-NancyFrance
  2. 2.Laboratoire des Sciences du Climat et de l’EnvironnementCEA-CNRSGif-sur-Yvette CédexFrance
  3. 3.Faculte des SciencesUniversite de Paris XI Orsay CedexFrance

Personalised recommendations