Advertisement

Manuelle Medizin

, Volume 56, Issue 4, pp 300–306 | Cite as

„Foam rolling“ und Wirbelsäulenbeweglichkeit – eine randomisierte kontrollierte Pilotstudie

  • Jan SchröderEmail author
  • Melanie Pöpel
Originalien
  • 172 Downloads

Zusammenfassung

Hintergrund

Trotz eingeschränkter Evidenz und mangelnder Kenntnis der zugrunde liegenden Mechanismen wird „foam rolling“ (FR) im fitness- und gesundheitsorientierten Sport praktiziert. Für die Extremitätengelenke werden Verbesserungen der Beweglichkeit beschrieben, für die Wirbelsäule liegen jedoch kaum Befunde vor.

Zielsetzung

In dieser Pilotstudie sollte für asymptomatische Probandinnen untersucht werden, ob FR die Wirbelsäulenbeweglichkeit in der Flexion und axialen Rotation verbessern kann.

Methodik

In einem randomisiert-kontrollierten Messwiederholungsdesign (Experimental- und Wartekontrollbedingung im Abstand von 1 Woche) wurde die Wirbelsäulenbeweglichkeit in der maximalen Vorbeugung („sit and reach test“) und in der maximalen axialen Rotation (Segmente L1 und T4, dynamische Videorasterstereographie) vor und nach FR (2 Serien à 3 min, 60 s Pause, 10 Rollphasen pro min, Druck ca. zwei Drittel des Körpergewichts) bei 19 beschwerdefreien, sportlich aktiven Frauen (Alter 26,1 ± 3,6 Jahre, Body-Mass-Index 22,3 ± 2,6 kg/m2) ermittelt.

Ergebnisse

Für die Vorbeugung wurde eine Verbesserung um etwa 2 cm beobachtet (p < 0,001), die jedoch unabhängig vom FR war (p = 0,910). Zeiteffekte der axialen Rotationsamplituden (L1, T4) waren nicht signifikant (p = 0,290–0,941). Obwohl Zuwächse (etwa 2°) nur nach FR beobachtet wurden, waren FR-Interaktionseffekte nicht signifikant (p = 0,261–0,368).

Schlussfolgerung

Unmittelbare Verbesserungen der Wirbelsäulenbeweglichkeit nach einmaligem FR konnten für sportlich aktive, jüngere Personen nicht gezeigt werden. Bei Beachtung methodischer Adaptationen hat sich die dynamische Videorasterstereographie jedoch als nützlich erwiesen, um in zukünftigen Studien auch bei funktionseingeschränkten Patienten die axiale Rotationsbeweglichkeit zu quantifizieren.

Schlüsselwörter

Wirbelsäule Untere Extremität Gelenkbeweglichkeit Körperliche Fitness Muskuloskeletales System 

Foam rolling and spinal flexibility—A randomized controlled pilot study

Abstract

Background

Despite limited evidence and little knowledge about underlying mechanisms or even potential risks, foam rolling (FR) has become a widely used tool for fitness and health purposes. Improvements in lower limb flexibility have been described, but there is a paucity of information for the spine.

Purpose

This pilot study aimed to investigate the effects of FR on trunk and spinal flexion and axial rotation in healthy subjects.

Methods

Spinal flexibility at maximal trunk flexion (sit and reach test) and maximal vertebral axial rotation (segments L1 and T4, dynamic video rasterstereography) was assessed in a randomized controlled repeated measures design (experimental and waiting control conditions separated by 1 week) before and after FR or a respective waiting time (control) in a sample of 19 active healthy females (age 26.1 ± 3.6 years, body mass index 22.3 ± 2.6 kg/m2). FR consisted of 2 repetitions (each 3 min with 60 s rest) for the paraspinal and lateral back muscles (10 roll cyles/min, average pressure approximately two thirds of body weight).

Results

We found a significant 2‑cm increase in the sit and reach test results (p < 0.001), which was, however, independent of the FR treatment (p = 0.910). Vertebral rotation (L1, T4) did not change significantly (p = 0.290–0.941). Although we observed 2‑degree increases on average for the FR condition only, the time × treatment interactions did not indicate an FR effect (p = 0.261–0.368).

Conclusion

Commonly accepted evidence for increases in lower limb flexibility after FR cannot be confirmed for spinal mobility after a single treatment in healthy active young women. The technical approach using dynamic rasterstereography to quantify axial spinal rotation appears to be promising for future FR investigations targeting patients with back complaints, provided methodical adaptations are taken into account.

Keywords

Spine Lower limb Joint flexibility Physical fitness Musculoskeletal system 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Schröder und M. Pöpel geben an, dass kein Interessenkonflikt besteht.

Die Datenerhebungen am Menschen wurden gemäß der Grundsätze der Erklärung von Helsinki von 1975 in ihrer aktuellen Version durchgeführt. Es liegt ein Votum der lokalen Ethikkommission vor (AZ 66 2016). Von allen beteiligten Probanden liegt eine Einverständniserklärung vor.

Literatur

  1. 1.
    Albertsen IM, Dettmann K, Babin K, Stücker R, Schröder J, Zech A, Hollander K (2018) Spinal postural changes during the modified Matthiass test in healthy children. Orthopäde.  https://doi.org/10.1007/s00132-018-3558-z CrossRefPubMedGoogle Scholar
  2. 2.
    Beardsley C, Skarabot J (2015) Effects of self-myofascial release: a systematic review. J Bodyw Mov Ther 19:747–758CrossRefGoogle Scholar
  3. 3.
    Behara B, Jacobson BH (2017) Acute effects of deep tissue foam rolling and dynamic stretching on muscular strength, power, and flexibility in division I linemen. J Strength Cond Res 31(4):888–892.  https://doi.org/10.1519/jsc.0000000000001051 CrossRefPubMedGoogle Scholar
  4. 4.
    Betsch M, Wild M, Johnstone B, Jungbluth P, Hakimi M, Kühlmann B, Rapp W (2013) Evaluation of a novel spine and surface topography system for dynamic spinal curvature analysis during gait. PLoS ONE 8(7):e70581.  https://doi.org/10.1371/journal.pone.0070581 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Betsch M, Wild M, Rath B, Tingart M, Schulze A, Quack V (2015) Strahlenfreie Diagnostik bei Skoliosen. Orthopäde 44:845–851CrossRefGoogle Scholar
  6. 6.
    Cheatham S, Kolber M, Cain M, Lee M (2015) The effects of self-myofascial release using a foam roll or roller massager on joint range of motion, muscle recovery, and performance: a systematic review. Int J Sports Phys Ther 10:827–838PubMedPubMedCentralGoogle Scholar
  7. 7.
    Drerup B (2014) Rasterstereographic measurement of scoliotic deformity. Scoliosis 9(1):22.  https://doi.org/10.1186/s13013-014-0022-7 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fairall RR, Cabell L, Boergers RJ, Battaglia F (2017) Acute effects of self-myofascial release and stretching in overhead athletes with GIRD. J Bodyw Mov Ther 21:648–652CrossRefGoogle Scholar
  9. 9.
    Freiwald J, Baumgart C, Kühnemann M, Hoppe MW (2016) Foam-rolling in sport and therapy—potential benefits and risks. Sports Orthop Traumatol 32:258–275CrossRefGoogle Scholar
  10. 10.
    Griefahn A, Oehlmann J, Zalpour C, von Piekartz H (2017) Do exercises with the foam roller have a short-term impact on the thoracolumbar fascia?—A randomized controlled trial. J Bodyw Mov Ther 21:186–193CrossRefGoogle Scholar
  11. 11.
    Grieve R, Goodwin F, Alfaki M, Bourton AJ, Jeffries C, Scott H (2015) The immediate effect of bilateral self myofascial release on the plantar surface of the feet on hamstring and lumbar spine flexibility: a pilot randomised controlled trial. J Bodyw Mov Ther 19:544–552CrossRefGoogle Scholar
  12. 12.
    Healey KC, Hatfield DL, Blanpied P, Dorfman LR, Riebe D (2014) The effects of myofascial release with foam rolling on performance. J Strength Cond Res 28:61–68CrossRefGoogle Scholar
  13. 13.
    Hotfiel T, Swoboda B, Krinner S, Grim C, Engelhardt M, Uder M, Heiss RU (2017) Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31:893–900CrossRefGoogle Scholar
  14. 14.
    Kalichman L, Ben David C (2017) Effect of self-myofascial release on myofascial pain, muscle flexibility, and strength: a narrative review. J Bodyw Mov Ther 21(2):446–451.  https://doi.org/10.1016/j.jbmt.2016.11.006 CrossRefPubMedGoogle Scholar
  15. 15.
    MacDonald GZ, Penney MDH, Mullaley ME, Cuconato AL, Drake CDJ, Behm DG, Button DC (2013) An acute bout of self-myofascial release increases range of motion without a subsequent decrease in muscle activation or force. J Strength Cond Res 27:812–821CrossRefGoogle Scholar
  16. 16.
    Martinez-Cabrera FI, Nunez-Sanchez FJ (2016) Acute effect of a foam roller on the mechanical properties of the rectus femoris based on tensiomyography in soccer players. Int J Hum Mov Sports Sci 4(2):26–32Google Scholar
  17. 17.
    Mayorga-Vega D, Merino-Marban R, Viciana J (2014) Criterion-related validity of sit-and-reach tests for estimating hamstring and lumbar extensibility: a meta-analysis. J Sports Sci Med 13:1–14PubMedPubMedCentralGoogle Scholar
  18. 18.
    Mellin G (1990) Decreased joint and spinal mobility associated with low back pain in young adults. J Spinal Disord 3:238–243PubMedGoogle Scholar
  19. 19.
    Mohr AR, Long BC, Goad CL (2014) Effect of foam rolling and static stretching on passive hip-flexion range of motion. J Sport Rehabil 23:296–299CrossRefGoogle Scholar
  20. 20.
    Murray AM, Jones TW, Horobeanu C, Turner AP, Sproule J (2016) Sixty seconds of foam rolling does not affect functional flexibility or change muscle temperature in adolescent athletes. Int J Sports Phys Ther 11:765–776PubMedPubMedCentralGoogle Scholar
  21. 21.
    Okamoto T, Masuhara M, Ikuta K (2014) Acute effects of self-myofascial release using a foam roller on arterial function. J Strength Cond Res 28:69–73CrossRefGoogle Scholar
  22. 22.
    Peacock CA, Krein DD, Silver TA, Sanders GJ, von Carlowitz KA (2014) An acute bout of self-myofascial release in the form of foam rolling improves performance testing. Int J Exerc Sci 7:202–211PubMedPubMedCentralGoogle Scholar
  23. 23.
    Pearcey G, Bradbury-Squires D, Kawamoto JE, Drinkwater EJ, Behm D, Button DC (2015) Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures. J Athl Train 50:5–13CrossRefGoogle Scholar
  24. 24.
    Sadler SG, Spink MJ, Ho A, De Jonge XJ, Chuter VH (2017) Restriction in lateral bending range of motion, lumbar lordosis, and hamstring flexibility predicts the development of low back pain: a systematic review of prospective cohort studies. BMC Musculoskelet Disord 18:179.  https://doi.org/10.1186/s12891-017-1534-0 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schleip R (2003) Fascial plasticity—a new neurobiological explanation: part 1. J Bodyw Mov Ther 7:11–19CrossRefGoogle Scholar
  26. 26.
    Schroeder AN, Best TM (2015) Is self myofascial release an effective preexercise and recovery strategy? A literature review. Curr Sports Med Rep 14:200–208CrossRefGoogle Scholar
  27. 27.
    Schröder J, Braumann KM, Reer R (2014) Wirbelsäulenform- und Funktionsprofile. Referenzwerte für die klinische Nutzung bei Rückenschmerzsyndromen. Orthopäde 43:841–849CrossRefGoogle Scholar
  28. 28.
    Schroeder J, Reer R, Braumann KM (2015) Video raster stereography back shape reconstruction: a reliability study for sagittal, frontal, and transversal plane parameters. Eur Spine J 24:262–269CrossRefGoogle Scholar
  29. 29.
    Schröder J, Renk V, Lohr C, Braumann KM (2016) Blackroll-fascial training and posture. Man Med 54:163–167CrossRefGoogle Scholar
  30. 30.
    Schroeder J, Renk V, Braumann KM, Hollander K (2017) Acute foam rolling effects on contractile properties of the m. biceps femoris. Ger J Exerc Sport Res 47(4):294–300CrossRefGoogle Scholar
  31. 31.
    Schröder J, Lüders L, Schmidt M, Braumann KM (2017) Myotonometrische Foam Roll-Effekte nach Krafttraining. In: Schwirtz A, Mess F, Demetriou Y, Senner V (Hrsg) Innovation & Technologie im Sport. Feldhaus, Hamburg, S 318Google Scholar
  32. 32.
    Wilke J, Schleip R, Klinger W, Stecco C (2017) The lumbodorsal fascia as a potential source of low back pain: a narrative review. Biomed Res Int.  https://doi.org/10.1155/2017/5349620 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Bewegungswissenschaft, Sport- und Bewegungsmedizin, Fakultät für Psychologie und BewegungswissenschaftUniversität HamburgHamburgDeutschland

Personalised recommendations