Skip to main content
Log in

Pathophysiologie der Bandscheibendegeneration

Literaturübersicht – Teil 2

Pathophysiology of intervertebral disc degeneration

Review of the literature – Part 2

  • Übersichten
  • Published:
Manuelle Medizin Aims and scope Submit manuscript

Zusammenfassung

Die Bandscheiben altern schneller als fast jedes andere Gewebe, da ihre Ernährung in einem avaskulären Gewebe behindert ist [25, 96, 83]. Die maßgeblichste strukturelle Veränderung, die im Degenerationsprozess abläuft, ist die Abnahme von Wassergehalt und osmotischem Druck, vor allem im Nucleus pulposus und im inneren Teil des Anulus fibrosus [95, 25, 57], sowie die Abnutzung der Matrix [46]. Der abnehmende osmotische Druck in alternden Bandscheiben verstärkt die Öffnung existierender Risse trotz der Abnahme der Scherkräfte im Anulus [112]. Fibröse Veränderungen des Nukleus, Desorganisation des Anulus sowie Veränderungen des Wirbelkörpers und der Endplatten geschehen vor allem im 5.–7. Lebensjahrzehnt. Diese Veränderungen sind in den unteren Bandscheiben stärker ausgeprägt als in den oberen und gehen der Formierung von Rissen und Spalten voraus. Der zeitliche Ablauf weist auf eine strenge Korrelation von Spalt- und Rissbildungen hin, die in der ersten Dekade im Nukleus beginnen, während Randläsionen unabhängig davon entstehen und deutlich später eintreten [51].

Abstract

Intervertebral discs age more rapidly than most other tissues because the nutritional supply is hindered by avascular tissue [25, 96, 83]. The most decisive structural alterations in the degenerative process are a decrease in water content and osmotic pressure, especially in the nucleus polposus and in the inner part of the annulus fibrosus [95, 25, 57], as well as wear of the matrix [46]. The decrease in osmotic pressure in aging intervertebral discs strengthens the opening of existing tears despite a decrease in shearing forces in the annulus [112]. Fibrous changes of the nucleus, disorganization of the annulus and changes to the vertebra and endplates occur in particular in the 5th–7th decades of life. These alterations are more intensive in the lower regions than in the upper and precede the formation of tears and clefts. The time scale indicates a strong correlation to tear and cleft formation, which begin in the nucleus in the first decade, whereas marginal lesions are formed independently and occur much later [51].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Adams MA, Hutton WC (1986) Gradual disc prolapse. Spine 10: 524–531

    Google Scholar 

  2. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31: 2151–2161

    PubMed  Google Scholar 

  3. Adams MA, Dolan P, Hutton WC (1986) The stages of disc degeneration as revealed by discograms. J Bone Joint Surg Br 68: 36–41

    PubMed  CAS  Google Scholar 

  4. Adams MA, Freeman BJ, Morrison HP et al. (2000) Mechanical initiation of intervertebral disc degeneration. Spine 25: 1625–1636

    PubMed  CAS  Google Scholar 

  5. Adams MA, Bogduk N, Burton K et al. (2002) The biomechanics of back pain. Churchill Livingstone, New York

  6. Ahn SH, Cho YW, Ahn MW et al. (2002) mRNA expression of cytokines and chemokines in herniated lumbar intervertebral cells. Spine 27: 911–917

    PubMed  Google Scholar 

  7. Akeda K, An HS, Pichika R et al. (2007) The expression of NG2 proteoglycan in the human intervertebral disc. Spine 32: 306–314

    PubMed  Google Scholar 

  8. Allan DB, Waddell G (1989) An historical perspective on low back pain and disability. Acta Orthop Scand Suppl 234: 1–23

    PubMed  CAS  Google Scholar 

  9. Amour A, Slocombe PM, Webster A et al. (1998) TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 435: 39–44

    PubMed  CAS  Google Scholar 

  10. Amour A, Knight CG, Webster A et al. (2000) The in-vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett 473: 275–279

    PubMed  CAS  Google Scholar 

  11. Andersson GB, Ortengren R, Nachemson A (1977) Intradiscal pressure and myoelectric back muscle activity related to posture and loading. Clin Orthop 129: 156–164

    PubMed  Google Scholar 

  12. Antoniou J, Mwale F, Demers CN et al. (2006) Quantitative magnetic resonance imaging of enzymatic induced degradation of the nucleus pulposus of intervertebral discs. Spine 31: 1547–1554

    PubMed  Google Scholar 

  13. Aoki Y, Ohtori S, Ino H. et al. (2004) Disc inflammation potentially promotes axonal regeneration of dorsal root ganglion neurons innervating lumbar intervertebral disc in rats. Spine 29: 2621–2626

    PubMed  Google Scholar 

  14. Aoki Y, An HS, Takahashi K et al. (2007) Axonal growth potential of lumbar dorsal root ganglion neurons in an organ culture system: response of nerve growth factor-sensitive neurons to neuronal injury and an inflammatory cytokine. Spine 32: 857–863

    PubMed  Google Scholar 

  15. Avizienyte E, Wyke AW, Jones RJ et al. (2002) Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signaling. Nat Cell Biol 4: 632–638

    PubMed  CAS  Google Scholar 

  16. Battie MC, Videman T, Parent E (2004) Lumbar disc degeneration: Epidemiology and genetic influences. Spine 29: 2679–2690

    PubMed  Google Scholar 

  17. Blenis J, Hawkes SP (1984) Characterisation of a transformation-sensitive protein in the extracellular matrix of chicken embryo fibroblasts. J Biol Chem 259: 11563–11570

    PubMed  CAS  Google Scholar 

  18. Boden SD, Davis DO, Dina TS et al. (1990) Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 72: 403–408

    PubMed  CAS  Google Scholar 

  19. Bogler O, Wren D, Bansal R et al. (1990) Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. Proc Natl Acad Sci U S A 87: 6368–6372

    PubMed  CAS  Google Scholar 

  20. Boos N, Dreier D, Hilfiker F et al. (1997) Tissue characterisation of symptomatic and asymptomatic disc herniations by quantitative magnetic resonance imaging. J Orthop Res 15: 141–149

    PubMed  CAS  Google Scholar 

  21. Boos N, Semmer N, Elfering A et al. (2000) Natural history of individuals with asymptomatic disc abnormalities in magnetic resonance imaging: predictors of low back pain-related medical consultation and work incapacity. Spine 25: 1484–1492

    PubMed  CAS  Google Scholar 

  22. Boos N, Weissbach S, Rohrbach H et al. (2002) Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 37: 2631–2644

    Google Scholar 

  23. Boos N, Rieder R, Schade V, Spratt KF, Semmer N, Aebi M (1995) Volvo award in clinical sciences: the diagnostic accuracy of magnetic resonance imaging, work perception, and psychosocial factors in identifying symptomatic disc herniations. Spine 20: 2613–2625

    PubMed  CAS  Google Scholar 

  24. Borenstein DG, O’Mara JW Jr, Boden SD et al. (2001) The value of magnetic resonance imaging of the lumbar spine to predict low – back pain in asymptomatic subjects: a seven-year follow-up study. J Bone Joint Surg Am 83 A:1306–1311

    Google Scholar 

  25. Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine 20: 1307–1314

    PubMed  CAS  Google Scholar 

  26. Carragee EJ, Tanner CM, Khurana S et al. (2000a) The rates of false-positive lumbar discography in select patients without low back symptoms. Spine 25: 1373–1380

    PubMed  CAS  Google Scholar 

  27. Carragee EJ, Alamin TF, Miller J, Grafe M (2002) Provocative discography in volunteer subjects with mild persistent low back pain. Spine J 2: 25–34

    PubMed  Google Scholar 

  28. Carragee E, Alamin T, Cheng I et al. (2006) Are first-time episodes of serious LBP associated with new MRI-findings? Spine J 6: 624–635

    PubMed  Google Scholar 

  29. Cassidy JJ, Hiltner A, Bear E (1990) The response of the hierarchical structure of the intervertebral disc to uniaxial compression. J Mat Sci Mat in Med 1: 69–80

    Google Scholar 

  30. Chung SA, Wei AQ, Connor DE et al. (2007) Nucleus pulposus cellular longevity by telomerase gene therapy. Spine 32: 1188–1196

    PubMed  Google Scholar 

  31. Coppes MH, Marani E, Thomeer RT et al. (1990) Innervation of annulus fibrosus in low back pain. Lancet 336: 189–190

    PubMed  CAS  Google Scholar 

  32. Coppes MH, Marani E, Thomeer RT et al. (1997) Innervation of „painful“ lumbar discs. Spine 22: 2342–2349

    PubMed  CAS  Google Scholar 

  33. Crabbe L, Karlseder J (2005) In the end, it’s all the structure. Curr Mol Med 5: 135–143

    PubMed  CAS  Google Scholar 

  34. Dimar J II, Glassman S, Carreon L (2007) Juvenile degenerated disc disease: a report of 76 cases identified by magnetic resonance imaging. Spine J 7: 332–337

    PubMed  Google Scholar 

  35. Elfering ADP, Semmer N, Birkhofer D et al. (2002) Risk factors for lumbar disc degeneration – a 5 year prospective MRI study in asymptomatic individuals. Spine 27: 125–134

    PubMed  Google Scholar 

  36. Fazzalari NL, Costi JJ, Hearn TC (2001) Mechanical and pathologic consequences of induced concentric anular tears in an ovine model. Spine 26: 2575–2581

    PubMed  CAS  Google Scholar 

  37. Franson RC, Saal JS, Saal JA (1992) Human disc phospholipase A2 is inflammatory. Spine (Suppl 6) 17: S129–S132

  38. Freemont AJ, Peacock TE, Goupille P et al. (1997) Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 350: 178–181

    PubMed  CAS  Google Scholar 

  39. Freemont AJ, Watkins A, Le Maitre C et al. (2002) Nerve growth factor expression and innervation of the painful intervertebral disc. J Pathol 197: 286–292

    PubMed  CAS  Google Scholar 

  40. Gomez DE, Alonso DF, Yoshiji H et al. (1997) Tissue inhibitors of metalloproteinase: structure, regulation and biological functions. Eur J Cell Biol 74: 111–122

    PubMed  CAS  Google Scholar 

  41. Goupille P, Jayson M, Valat JP et al. (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine 23: 1612–1626

    PubMed  CAS  Google Scholar 

  42. Graichen H, Putz R (2006) Anatomische und funktionelle Aspekte von Brust- und Lendenwirbelsäule. Manuelle Med 44: 479–486

    Google Scholar 

  43. Grako KA, Stallcup WB (1995) Participation of the NG2 proteoglycan in rat aortic smooth muscle cell responses to platelet-derived growth factor. Exp Cell Res 221: 231–240

    PubMed  CAS  Google Scholar 

  44. Gronblad M, Virri J, Tolonen J et al. (1994) A controlled immunohistochemical study of inflammatory cells in the disc herniation tissue. Spine 19: 2744–2751

    PubMed  CAS  Google Scholar 

  45. Gruber HE, Ingram J, Norton J, Hanley EN (2007) Senescence in cells of the aging and degenerating intervertebral disc. Immunolocalisation of senescence-associated beta-galactosidase in human and sand rats. Spine 32: 321–327

    PubMed  Google Scholar 

  46. Gruber HE, Ingram JI, Hoelscher GL et al. (2007) Cell polarity in the anulus of the human intervertebral disc: morphologic, immunocytochemical, and molecular evidence. Spine 32: 1287–1294

    PubMed  Google Scholar 

  47. Gruber HE, Mougeot J-L, Hoelscher G et al. (2007) Microarray analysis of laser capture microdissected-anulus cells from the human intervertebral disc. Spine 32: 1181–1187

    PubMed  Google Scholar 

  48. Guehring T, Omlor G, Lorenz H et al. (2005) Stimulation of gene expression and loss of anular architecture caused by experimental disc degeneration – An in vivo animal study. Spine 30: 2510–2515

    PubMed  Google Scholar 

  49. Guehring T, Omlor GW, Lorenz H et al. (2006) Disc distraction shows evidence of regenerative potential in degenerated intervertebral discs as evaluated by protein expression, magnetic resonance imaging and messenger ribonucleic acid expression analysis. Spine 31: 1658–1665

    PubMed  Google Scholar 

  50. Gunzburg R, Parkinson R, Moore R (1992) A cadaveric study comparing discography, magnetic resonance imaging histology and mechanical behaviour of the human lumbar disc. Spine 17: 417–426

    Article  PubMed  CAS  Google Scholar 

  51. Haefeli M, Kalberer F, Saegesser D et al. (2006) The course of macroscopic degeneration in the human lumbar intervertebral disc. Spine 31: 1522–1531

    PubMed  Google Scholar 

  52. Harrington L (2004) Those dam-aged telomeres! Curr Opin Genet Dev 14: 22–28

    PubMed  CAS  Google Scholar 

  53. Hashimoto G, Aoki T, Nakamura H et al. (2001) Inhibitor of ADAMTS4 (aggrecanase-1) by tissue inhibitors of metalloproteinases (TIMP-1, 2, 3 and 4). FEBS Lett 494: 192–195

    PubMed  CAS  Google Scholar 

  54. Hashizume H (1980) Three-dimensional architecture and development of lumbar intervertebral discs. Acta Med Okayama 34: 301–314

    PubMed  CAS  Google Scholar 

  55. Haughton V (2004) Medical imaging of intervertebral disc degeneration: current status of imaging. Spine 29: 2751–2756

    PubMed  Google Scholar 

  56. Hirsch C, Schajowicz F (1953) Studies on structural changes in the lumbar annulus fibrosus. Acta Orthop Scand 32: 184–231

    Google Scholar 

  57. Iatridis JC, Laible JP, Krag HM (2003) Influence of fixed charge density magnitude and distribution on the intervertebral disc. Applications of a proelastic and chemical electric (PEACE) model. J Biomech Eng 125: 12–24

    PubMed  Google Scholar 

  58. Igarashi T, Kikuchi S, Shubayev V, Myers RR (2000) Exogenous tumor necrosis factor-alpha mimics nucleus pulposus-induced neuropathology: molecular, histologic, and behavioural components in rats. Spine 23: 2975–2980

    Google Scholar 

  59. Inoue H (1981) Three-dimensional architecture of lumbar intervertebral discs. Spine 6: 139–146

    PubMed  CAS  Google Scholar 

  60. Jarvik JG, Hollingworth W, Heagerty PJ et al. (2005) Three year incidence of low back pain in an initially asymptomatic cohort: clinical and imaging risk factors. Spine 30: 1541–1548

    PubMed  Google Scholar 

  61. Jee BK, Surendran S, Sortho M et al. (2007) Role of tumor necrosis factor-alpha, interleukin-8, and dexamethasone in the focal adhesion kinase expression by human nucleus pulposus cells. Spine 32: 30–35

    PubMed  Google Scholar 

  62. Jensen MC, Brant-Zawadski MN, Obuchowski N et al. (1994) Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 331: 69–73

    PubMed  CAS  Google Scholar 

  63. Johnson WEB, Patterson AM, Eisenstein SM, Roberts S (2007) The presence of pleiotrophin in the human intervertebral disc is associated with increased vascularisation. Spine 32: 1295–1302

    PubMed  Google Scholar 

  64. Kashiwagi M, Tortorella M, Nagase H et al. (2001) TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem 276: 12501–12504

    PubMed  CAS  Google Scholar 

  65. Kroeber M, Unglaub F, Wong H (2005) Effects of controlled dynamic disc distraction on degenerated intervertebral discs: an in vivo study on the rabbit lumbar spine model. Spine 30: 181–187

    PubMed  Google Scholar 

  66. Loechel F, Fox JW, Murphy G et al. (2000) ADAM-12S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. Biochem Biophys Res Commun 278: 511–515

    PubMed  CAS  Google Scholar 

  67. MacLean JJ, Lee CR, Alini M (2004) Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J Orthop Res 22: 1193–1200

    PubMed  CAS  Google Scholar 

  68. Martin JA, Buckwalter JA (2003) The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J Bone Joint Surg Am (Suppl 2) 85:106–110

    Google Scholar 

  69. McCulloch JA, Transfeldt EE (1997) Macnab’s backache. 3rd edn. Williams & Wilkins, Philadelphia, pp 1–75

  70. Moore RJ, Vernon-Roberts B, Fraser R et al. (1996) The origin and fate of herniated lumbar intervertebral disc tissue. Spine 21: 2149–2155

    PubMed  CAS  Google Scholar 

  71. Müller EJ, Russe OJ, Muhr G (2004) Osteomyelitis der Wirbelsäule. Orthopäde 33: 305–315

    PubMed  Google Scholar 

  72. Nachemson A (1963) The influence of spinal movements on the intervertebral disk pressure and on the tensile stresses in the anulus fibrosus. Acta Orthop Scand 33: 183–207

    PubMed  CAS  Google Scholar 

  73. Nachemson A, Morris JM (1964) In vivo measurements of intradiscal pressure. Discometry, a method for the determination of pressure in the lower lumbal discs. J Bone Joint Surg Am 46: 1077–1092

    PubMed  CAS  Google Scholar 

  74. Nerlich AG, Paesold G, Bachmeier B, Boos N (2005) Pathophysiologie und Pathomorphologie der Bandscheibendegeneration. In: Hildebrand J, Müller G, Pfingsten M (Hrsg) Lendenwirbelsäule – Ursachen, Diagnostik und Therapie von Rückenschmerzen. Urban & Fischer, München, S 98–106

  75. Nerlich AG, Schleicher ED, Boos N (1997) Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine 22: 2781–2795

    PubMed  CAS  Google Scholar 

  76. Nerlich AG, Weiler C, Zipperer J et al. (2002) Immunolocalisation of phagocytic cells in normal and degenerated intervertebral discs. Spine 27: 2482–2490

    Google Scholar 

  77. Nishiyama A, Lin XH, Giese N et al. (1996) Interaction between NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells is required for optimal response to PDGF. J Neurosci Res 43: 315–330

    PubMed  CAS  Google Scholar 

  78. Osti OL, Vernon-Roberts B, Moore R et al. (1992) Annular tears and disc degeneration in the lumbar spine. A post-mortem study of 135 discs. J Bone Joint Surg Br 74: 678–682

    PubMed  CAS  Google Scholar 

  79. Pezowicz CA, Schechtman H, Robertson PA, Broom ND (2006) Mechanisms of anular failure resulting from excessive intradiscal pressure: a microstructural-micromechanical investigation. Spine 31: 2891–2903

    PubMed  Google Scholar 

  80. Putz R (2005) Funktionelle Anatomie der Lendenwirbelsäule. In: Hildebrand J, Müller G, Pfingsten M (Hrsg) Lendenwirbelsäule. Urban & Fischer, München, S 68–75

  81. Roberts S, Eisenstein SM, Menage J (1995) Mechanoreceptors in intervertebral discs: morphology, distribution and neuropeptides. Spine 20: 2645–2651

    PubMed  CAS  Google Scholar 

  82. Roberts S, Caterson B, Menage J et al. (2000) Matrix metalloproteinases and aggrecanase: their role in the degeneration of the intervertebral disc. Spine 25: 1197–1200

    Google Scholar 

  83. Roughley PJ (2004) Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 29: 2691–2699

    PubMed  Google Scholar 

  84. Schleicher ED, Wagner E, Nerlich AG (1997) Increased accumulation of the glycoxidation product N-(carboymethyl)lysine in human tissue in diabetes and aging. J Clin Invest 99: 457–468

    Article  PubMed  CAS  Google Scholar 

  85. Schmorl G, Goin LS, Junghanns H et al. (eds) (1959) The human spine in health and disease. Anatomicopathologic Studies. Grune & Stratton, New York

  86. Schultz A, Andersson G, Ortengren R et al. (1982) Loads of lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J Bone Joint Surg Am 64: 713–720

    PubMed  CAS  Google Scholar 

  87. Seguin CA, Pilliar RM, Roughley PJ et al. (2005) Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue. Spine 30: 1940–1948

    PubMed  Google Scholar 

  88. Shinohara H (1970) Lumbar disc lesion with special reference to the histological significance of nerve endings of the lumbar disc. J Jpn Orthop Assoc 44: 553–570

    CAS  Google Scholar 

  89. Stallcup WB (1981) The NG2 antigen, a putative lineage marker: immunofluorescent localization in primary cultures of rat brain. Dev Biol 83: 154–165

    PubMed  CAS  Google Scholar 

  90. Stallcup WB, Beasley L, Levine J (1983) Cell-surface molecules that characterize different stages in the development of cerebellar interneurons. Cold Spring Harb Symp Quant Biol 48: 761–774

    PubMed  CAS  Google Scholar 

  91. Sztrolovics R, Alini M, Roughley PJ et al. (1997) Aggrecan degradation in human intervetebral disc and articular cartilage. Biochem J 326: 235–241

    PubMed  CAS  Google Scholar 

  92. Tanaka M, Nakahara S, Inoue H (1993) A pathologic study of discs in the elderly. Separation between the cartilaginous endplate and the vertebral body. Spine 18: 1456–1462

    PubMed  CAS  Google Scholar 

  93. Thompson JP, Pearce RH, Schlechter MT et al. (1990) Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine 15: 411–415

    PubMed  CAS  Google Scholar 

  94. Tsuji T, Chiba K, Imabayashi H et al. (2007) Age-related changes in expression of tissue inhibitor of matalloproteinases-3 associated with transition from the notochordal nucleus pulposus to the fibrocartilaginous nucleus pulposus in the rabbit intervertebral disc. Spine 32: 849–856

    PubMed  Google Scholar 

  95. Urban JPG, Holm SH (1986) Intervertebral disc nutrition as related to spinal movements and fusion. In: Hargens AR (ed) Tissue nutrition and viability. Springer, Berlin Heidelberg New York, pp 101–119

  96. Urban JPG, Roberts S (2003) Degeneration of intervertebral discs. Arthritis Res Ther 5: 120–130

    PubMed  Google Scholar 

  97. Vernon-Roberts B (1988) Disc pathology and disease states. In: Gosh P (ed) The biology of the intervertebral disc. CRC Press, Boca Raton/FL, pp 73–119

  98. Vernon-Roberts B, Fazzalari NL, Manthey BA (1997) Pathogenesis of tears of the anulus investigated by multiple-level transaxial analysis of the T12–L1 disc. Spine 22: 2641–2646

    PubMed  CAS  Google Scholar 

  99. Videman T, Battie MC (1999) The influence of occupation on lumbar degeneration. Spine 24: 1164–1168

    PubMed  CAS  Google Scholar 

  100. Videman T, Nurminen M (2004) The occurrence of annular tears and their relation to lifetime back pain history: a cadaveric study using barium sulphate discography. Spine 29: 2668–2676

    PubMed  Google Scholar 

  101. Videman T, Nurminen M, Troup JD (1990) Lumbar spinal pathology in cadaveric material in relation to history of back pain, occupation and physical loading. Spine 15: 728–740

    PubMed  CAS  Google Scholar 

  102. Waris E, Eskelin M, Hermunen H et al. (2007) Disc degeneration in low back pain: A 17-year follow-up study using magnetic resonance imaging. Spine 32: 681–684

    PubMed  Google Scholar 

  103. Weiler C, Nerlich AG, Zipperer J et al. (2002) 2002 SSE award competition in basic science: expression of major matrix metalloproteinases is associated with intervertebral disc degeneration and resorption. Eur Spine J 11: 308–320

    PubMed  CAS  Google Scholar 

  104. Weiler C, Nerlich AG, Bachmeier BE et al. (2005) Expression and distribution of TNF-alpha in human lumbar intervertebral discs. A study in surgical specimen and autopsy controls. Spine 30: 44–53

    PubMed  Google Scholar 

  105. Weishaupt D, Zanetti M, Hodler J et al. (2001) Painful lumbar disc derangement: relevance of endplate abnormalities at MR imaging. Radiology 218: 420–427

    PubMed  CAS  Google Scholar 

  106. Weisskopf M, Birnbaum K, Sagheri M et al. (2004) Correlation of low back pain and enhanced vascularisation in the vertebral endplate. Z Orthop Ihre Grenzgeb 142: 174–178

    PubMed  CAS  Google Scholar 

  107. Wilson SS, Baetge EE, Stallcup WB et al. (1981) Antisera specific for cell lines with mixed neuronal and glial properties. Dev Biol 83: 146–153

    PubMed  CAS  Google Scholar 

  108. Yasuma T, Makino E, Saito S et al. (1986) Histological development of intervertebral disc herniation. J Bone Joint Surg Am 68: 1066–1072

    PubMed  CAS  Google Scholar 

  109. Yasuma T, Arai K, Yamauchi Y (1993) The histology of lumbar intervertebral disc herniation. The significance of small blood vessels in the extruded tissue. Spine 18: 1761–1765

    PubMed  CAS  Google Scholar 

  110. Yu SW, Haughton VM, Sether LA et al. (1988) Anulus fibrosus in bulging intervertebral discs. Radiology 169: 761–763

    PubMed  CAS  Google Scholar 

  111. Yu WH, Yu S, Meng Q (2000) TIMP-3 binds to sulphated glycosaminoglycans of the extracellular matrix. J Biol Chem 276: 31226–31232

    Google Scholar 

  112. Wognum S, Huyghe JM, Baaijens FP (2006) Influence of osmotic pressure changes on the opening of existing cracks in 2 intervertebral disc models. Spine 31: 1783–1788

    PubMed  Google Scholar 

  113. Olmarker K, Larsson K (1998) Tumor necrosis factor alpha and nucleus pulposus-induced nerve root injury. Spine 23: 2538–2544

    PubMed  CAS  Google Scholar 

  114. Ferrara L, Triano JJ, Sohn MJ, Song E, Lee DD (2005) A biomechanical assessment of disc pressures in the lumbosacral spine in response to external unloading forces. Spine J 5: 548–553

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schürer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schürer, R. Pathophysiologie der Bandscheibendegeneration. Manuelle Medizin 46, 77–81 (2008). https://doi.org/10.1007/s00337-007-0569-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00337-007-0569-y

Schlüsselwörter

Keywords

Navigation