Advertisement

Mammalian Genome

, Volume 7, Issue 12, pp 906–908 | Cite as

cloning, sequencing, and chromosomal localization of two tandemly arranged human pseudogenes for the proliferating cell nuclear antigen (PCNA)

  • Y. Taniguchi
  • Y. Katsumata
  • S. Koido
  • H. Suemizu
  • S. Yoshimura
  • T. Moriuchi
  • K. Okumura
  • K. Kagotani
  • H. Taguchi
  • T. Imanishi
  • T. Gojobori
  • H. Inoko
Original Contribution

Abstract

We have characterized a human genomic clone carrying two pseudogenes for the proliferating cell nuclear antigen (PCNA), which were tandemly arranged on human Chromosome (Chr) 4. One is a processed pseudogene that showed a 73% nucleotide homology to the human PCNA cDNA and possessed none of the introns existing in the functional PCNA gene. This pseudogene presumably arose by reverse transcription of a PCNA mRNA followed by integration of the cDNA into the genome. The other is a 5’ and 3’ truncated pseudogene that showed a nucleotide homology to a 3’ region of the exon 4 and to a 5’ region of the exon 5 of the PCNA gene and did not have the intronic sequence between the exons 4 and 5. Both pseudogenes had the same nucleotide deletion as compared with the human functional PCNA gene. A phylogenetic analysis of PCNA gene family, including the functional PCNA gene and another PCNA pseudogene located on a different chromosome, revealed that the truncated pseudogene exhibits the closest evolutionary relationship with the processed pseudogene, suggesting, that the truncated pseudogene was generated by duplication of the processed pseudogene after translocation to Chr 4. Furthermore, fluorescence in situ hybridization revealed that these pseudogenes are located on the long arm of Chr 4, 4q24.

Keywords

Proliferate Cell Nuclear Antigen EcoRI Fragment Nucleotide Homology Proliferate Cell Nuclear Antigen Gene Proliferate Cell Nuclear Antigen mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almendral, J.M., Huebsh, D., Blundell, P.A., Macdonald-Bravo, H., Bravo, R. (1987). Cloning and sequence of the human nuclear protein cyclin: homology with DNA-binding proteins. Proc. Natl. Acad. Sci. USA 84, 1575–1579.PubMedCrossRefGoogle Scholar
  2. Arimori, K., Koido, S., Yoshimura, S., Taniguchi, Y., Arimori, S., Moriuchi, T. (1994). Nucleotide sequence of a human genomic DNA fragment containing the PCNA pseudogene and its localization on chromosome 4. Tokai Exp. Clin. Med. 19, 1–5.Google Scholar
  3. Ina, Y. (1992). ODEN: Molecular Evolutionary Analysis System for DNA and Amino Acid Sequences, ver. 1.1.1. DNA Data Bank of Japan, Mishima.Google Scholar
  4. Inoko, H., Ando, A., Kimura, M., Tsuji, K. (1985). Isolation and characterization of the cDNA clone and genomic clones of a new HLA class II antigen heavy chain, DO alpha. J. Immunol. 135, 2156–2159.PubMedGoogle Scholar
  5. Jaskulski, D., DeReil, J.K., Mercer, W.E., Calabretta, B., Baserga, R. (1988). Inhibition of cellular proliferation by antisense oligodeoxynucleotides of PCNA cyclin. Science 240, 1544–1546.PubMedCrossRefGoogle Scholar
  6. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.PubMedCrossRefGoogle Scholar
  7. Ku, D., Travali, S., Calabretta, B., Heubner, K., Baserga, R. (1989). Human gene for proliferating cell nuclear antigen has pseudogenes and localizes to chromosome 20. Somatic Cell Mol. Genet. 15, 297–307.CrossRefGoogle Scholar
  8. Leibovici, M., Gusse, M., Bravo, R., Mechali, M. (1990). Characterization and developmental expression of Xenopus proliferating cell nuclear antigen (PCNA). Dev. Biol. 141, 183–192.PubMedCrossRefGoogle Scholar
  9. Lichter, P., Cremer, T., Borden, J., Manuelidis, L., Ward, D.C. (1988). Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80, 224–234.PubMedCrossRefGoogle Scholar
  10. Matsumoto, K., Moriuchi, T., Koji, T., Nakane, P.K. (1987). Molecular cloning of cDNA coding for rat proliferating cell nuclear antigen (PCNA)/cyclin. EMBO J. 6, 637–642.PubMedGoogle Scholar
  11. Moriuchi, T. (1990). Proliferating cell nuclear antigen (PCNA): a nuclear protein engaged in eukaryotic DNA replication for one billion years. Med. Sci. Res. 18, 911–915.Google Scholar
  12. Novacek, M.J. (1992). Mammalian phylogeny: shaking the tree. Nature 356, 121–125.PubMedCrossRefGoogle Scholar
  13. Pearson, W.R., Lipman, DJ. (1988). Improved tools for biological sequence analysis. Proc. Natl. Acad. Sci. USA 85, 2444–2448.PubMedCrossRefGoogle Scholar
  14. Prelich, G., Stillman, B. (1988). Coordinated leading and lagging strand synthesis during SV40 DNA replication in vitro requires PCNA. Cell 53, 117–126.PubMedCrossRefGoogle Scholar
  15. Prelich, G., Kostura, M., Marshak, D.R., Mathews, M.R., Stillman, B. (1987). The cell-cycle regulated proliferating cell nuclear antigen is required for SV40 DNA replication in vitro. Nature 326, 471–475.PubMedCrossRefGoogle Scholar
  16. Saitou, N., Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 20, 1–10.Google Scholar
  17. Sanger, F., Nicklen, S., Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.PubMedCrossRefGoogle Scholar
  18. Takahashi, E., Hori, T., O’Connell, P., Leppert, M., White, R. (1990). R-banding and nonisotopic in situ hybridization: precise localization of the human type II collagen gene (COL2A1). Hum. Genet. 86, 14–16.PubMedCrossRefGoogle Scholar
  19. Takahashi, E., Yamauchi, M., Tsuji, H., Hitomi, A., Meuth, M., Hori, T. (1991). Chromosome mapping of the human cytidine-5’-triphosphate synthetase (CTPS) gene to band 1p34.1-p34.3 by fluorescence in situ hybridization. Hum. Genet. 88, 119–121.PubMedCrossRefGoogle Scholar
  20. Thompson, J.D., Higgins, D.G., Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.PubMedCrossRefGoogle Scholar
  21. Travali, S., Ku, D., Rizzo, M.G., Ottavio, L., Baserga, R., Calabretta, B. (1989). Structure of the human gene for the proliferating cell nuclear antigen. J. Biol. Chem. 264, 7466–7472.PubMedGoogle Scholar
  22. Wilde, C.D. (1986). Pseudogenes. Crit. Rev. Biochem. 19, 323–352.CrossRefGoogle Scholar
  23. Yamaguchi, M., Hayashi, Y., Hirose, F., Matsuoka, S., Moriuchi, T., Shiroishi, T., Moriwaki, K., Matsukage, A. (1991). Molecular cloning and structural analysis of mouse gene and pseudogenes for proliferating cell nuclear antigen. Nucleic Acids Res. 19, 2403–2410.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Y. Taniguchi
    • 1
  • Y. Katsumata
    • 1
  • S. Koido
    • 2
  • H. Suemizu
    • 1
  • S. Yoshimura
    • 1
  • T. Moriuchi
    • 1
  • K. Okumura
    • 3
  • K. Kagotani
    • 3
  • H. Taguchi
    • 3
  • T. Imanishi
    • 4
  • T. Gojobori
    • 4
  • H. Inoko
    • 1
  1. 1.Department of Molecular Life ScienceTokai University School of MedicineBohseidai, Isehara, KanagawaJapan
  2. 2.Department of PathologyThe Jikei University School of MedicineMinato-ku, TokyoJapan
  3. 3.Faculty of BioresourcesMie UniversityTsuJapan
  4. 4.Center for Information BiologyNational Institute of GeneticsMishima, Shizuoka-kenJapan

Personalised recommendations