Advertisement

Mammalian Genome

, Volume 7, Issue 5, pp 359–362 | Cite as

A class of highly polymorphic tetranucleotide repeats for canine genetic mapping

  • L. V. Francisco
  • A. A. Langsten
  • C. S. Mellersh
  • C. L. Neal
  • E. A. Ostrander
Original Contribution

Abstract

We have identified and characterized a new class of polymorphic markers for the canine genome from a simple tetranucleotide repeat sequence, (GAAA)n. Genetic markers derived from this repeat are highly polymorphic compared with other canine microsatellites, yet are stable enough to be useful for following Mendelian inheritance in multigeneration pedigrees. We show further that (GAAA)n repeats are distributed throughout the canine genome and occur with sufficient frequency to be useful in the development of a framework map of the canine genome.

Keywords

Hybrid Cell Line Tetranucleotide Repeat Canine Genome Small Repeat Canine Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barendse, W., Armitage, S.M., Kossarek, L.M., Shalom, A., Kirkpatrick, B.W., Ryan, A.M., Clayton, D., Li, L., Neibergs, H.L., Zhang, N., Grosse, W.M., Weiss, J., Creighton, P., et al. (1994). A genetic linkage map of the bovine genome. Nature Genet. 6, 227–234.PubMedCrossRefGoogle Scholar
  2. Dietrich, W., Katz, H., Lincoln, S.E., Shin, H.-S., Friedman, J., Dracopoli, N.C., Lander, E.S. (1992). A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447.PubMedGoogle Scholar
  3. Edwards, A., Civitello, A., Hammond, H.A., Caskey, C.T. (1991). DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Hum. Genet. 49, 746–756.PubMedGoogle Scholar
  4. Edwards, A., Hammond, H.A., Jin, L., Caskey, C.T., Chakraborty, R. (1992). Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12, 241–253.PubMedCrossRefGoogle Scholar
  5. Hamada, H., Kakunaga, T. (1982). Potential Z-forming sequences are highly dispersed in the human genome. Nature 298, 396–398.PubMedCrossRefGoogle Scholar
  6. Hamada, H., Petrino, M.G., Kakunaga, T., Seidman, M., Stollar, B.D. (1984). Characterization of genomic Poly(dT-dG) · Poly(dC-dA) sequences; structure, organization and conformation. Mol. Cell. Biol. 4, 2610–2621.PubMedGoogle Scholar
  7. Hersfield, B., Inouye, L., Chader, G., Ripps, H., Aguirre, G. (1991). Organization and transcription of canine (CaC)n sequences. J. Hered. 82, 251–254.Google Scholar
  8. Holmes, N.G., Mellersh, C.S., Humphreys, S.J., Binns, M.M., Holliman, A., Curtis, R., Sampson, J. (1993). Isolation and characterization of microsatellites from the canine genome. Anim. Genet. 24, 289–292.PubMedGoogle Scholar
  9. Holmes, N.G., Dickens, H.F., Parker, H.L., Binns, M.M., Mellersh, C.S., Sampson, J. (1995). Eighteen canine microsatellites. Anim. Genet. 26, 132–133.PubMedCrossRefGoogle Scholar
  10. Kwiatkowski, D.J., Henske, E.P., Weimer, K., Ozelius, L., Gusella, J.F., Haines, J. (1992). Construction of a GT polymorphism map of human 9q. Genomics 12, 229–240.PubMedCrossRefGoogle Scholar
  11. Litt, M., Luty, J.A. (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44, 397–401.PubMedGoogle Scholar
  12. Miesfeld, R., Krystal, M., Arnheim, N. (1981). A member of a new repeated sequence family which is conserved throughout eukaryotic evolution is found between the human delta and beta globin genes. Nucleic Acids Res. 9, 5931–5947.PubMedCrossRefGoogle Scholar
  13. Murray, J.C., Buetow, K.H., Weber, J.L., Ludwigsen, S., Scherpbier-Heddema, T., Manion, F., Quillen, J., Scheffield, V.C., Sunden, S., Duyk, G.M., etal. (1994). A comprehensive human linkage map with centimorgan density. Cooperative Human Linkage Center (CHLC). Science 265, 2049–2054.PubMedCrossRefGoogle Scholar
  14. NIH/CEPH Collaborative Mapping Group (1992). A comprehensive genetic linkage map of the human genome. Science 258, 67–86.CrossRefGoogle Scholar
  15. Ostrander, E.A., Jong, P.M., Rine, J., Duyk, G. (1992). Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proc. Natl. Acad. Sci. USA 89, 3419–3423.PubMedCrossRefGoogle Scholar
  16. Ostrander, E.A., Sprague, G., Rine, J. (1993). Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in dog. Genomics 16, 207–213.PubMedCrossRefGoogle Scholar
  17. Ostrander, E.A., Mapa, F., Yee, M., Rine, J. (1995). One hundred new simple sequence repeat-based markers for the canine genome. Mamm. Genome 6, 192–195.PubMedCrossRefGoogle Scholar
  18. Ott, J.(1992). Analysis of human genetic linkage, (Baltimore: The Johns Hopkins University Press).Google Scholar
  19. Rothuizen, J., Wolfswinkel, J., Lenstra, J.A., Frants, R.R. (1994). The incidence of mini- and micro-satellite repetitive DNA in the canine genome. Theor. Appl. Genet. 89, 403–406.CrossRefGoogle Scholar
  20. Tautz, D., Renz, M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12, 4127–4138.PubMedCrossRefGoogle Scholar
  21. Weber, J.L. (1990). Informativeness of human (dC-dA)n · (dG-dT)n polymorphisms. Genomics 7, 524–530.PubMedCrossRefGoogle Scholar
  22. Weber, J.L., May, P.E. (1989). Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396.PubMedGoogle Scholar
  23. Weber, J.L., Wong, C. (1993). Mutation of human short tandem repeats. Human Molecular Genetics 2, 1123–1128.PubMedCrossRefGoogle Scholar
  24. Weissenbach, J., Gyapay, G., Dib, C, Vignal, A., Morissette, J., Millasseau, P., Vaysseix, G., Lathrop, M. (1992). A second generation linkage map of the human genome. Genomics 359, 794–801.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • L. V. Francisco
    • 1
  • A. A. Langsten
    • 1
  • C. S. Mellersh
    • 1
  • C. L. Neal
    • 1
  • E. A. Ostrander
    • 1
    • 2
  1. 1.Program in Transplantation Biology, Clinical Research Division, M318Fred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Program in Molecular MedicineFred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations