Mammalian Genome

, Volume 7, Issue 5, pp 335–339 | Cite as

Production of congenic mouse strains carrying genomic intervals containing SLE-susceptibility genes derived from the SLE-prone NZM2410 strain

  • L. Morel
  • Y. Yu
  • K. R. Blenman
  • R. A. Caldwell
  • E. K. Wakeland
Original Contribution

Abstract

Systemic lupus erythematosus is inherited as a complex polygenic trait. Four genomic intervals containing major SLE-susceptibility loci were previously identified by interval mapping in the NZM2410 mouse model. In this paper, we utilized a marker-assisted selection protocol to produce four congenic mouse strains, each carrying an NZM2410-derived SLE-susceptibility interval on a C57BL/6-resistant background. Each strain carries only one susceptibility allele derived from this polygenic model and consequently can be used to characterize the specific component phenotypes contributed by individual SLE-susceptibility genes. We illustrate the efficacy of this approach with phenotypic data for one of our congenic strains, B6.NZMH2Z. Our results indicate that this single genomic interval from Chromosome (Chr) 17 of NZM2410 can mediate increased levels of IgG autoantibodies specific for chromatin and that, similar to results obtained in our original genetic cross, B6.NZMH2z/b heterozygotes are more prone than B6.NZMH2z homozygotes to the development of humoral autoimmunity to nuclear antigens. These results illustrate the feasibility of using congenic strains to dissect the complex pathogenic mechanisms that mediate polygenic SLE. These congenic strains will be valuable tools in the genetic analysis of SLE susceptibility. In future studies, these congenic strains will be interbred to produce bi- and tri-congenic strains in order to assess the role of genetic interactions in the expression of specific components of SLE pathogenesis. They will also be instrumental to the positional cloning and identification of the genes responsible for SLE susceptibility, via the production of congenic recombinants.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braverman, I.M. (1968). Study of autoimmune disease in New Zealand mice. I. Genetic features and natural history of NZB, NZY, and NZW strains and NZB/NZW hybrids. J. Invest. Dermatol. 50, 483–499.PubMedGoogle Scholar
  2. Dietrich, W., Katz, H., Lincoln, S.E., Shin, J.S., Friedman, J., Dracopoli, N.C., Lander, E.S. (1992). A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447.PubMedGoogle Scholar
  3. Dietrich, W.F., Miller, J.C., Steen, R.G., Merchant, M., Damron, D., Nahf, R., Gross, A., et al. (1994). A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7, 220–245.PubMedCrossRefGoogle Scholar
  4. Drake, C.G., Rozzo, S.J., Hirschfeld, H.F., Smarnworawong, N.P., Palmer E., Kotzin, B.K. (1995a). Analysis of the NZB contribution to lupus-like renal disease: multiple genes that operate in a threshold manner. J. Immunol. 154, 2441–2447.PubMedGoogle Scholar
  5. Drake, C.G., Rozzo, S.J., Vyse, T.J., Palmer E., Kotzin, B.K. (1995b). Genetic contributions to lupus-like disease in (NZB × NZW)F1 mice. Immunol. Rev. 144, 51–74.PubMedCrossRefGoogle Scholar
  6. Flaherty, L. (1991). Congenic strains. In: The Mouse in Biomedical Research, H.L. Foster, J.D. Small, J.G. Fox, eds. Vol. I History, Genetics, and Wild Mice, (New York: Academic Press), pp. 215–221.Google Scholar
  7. Hylkema, M.N., Hyugen, H., Kramers, C., v.d. Wal, T.J., de Jong, J., van Bruggen, M.C., Swaak, A.J., Berden, J.H., Smeenk, R.J. (1994). Clinical evaluation of a modified Elisa, using photobiotinylated DNA, for the detection of anti-DNA antibodies. J Immunol. Methods 170, 93–102.PubMedCrossRefGoogle Scholar
  8. Kono, D.H., Burlingame, R.W., Owens, D.G., Kuramochi, A., Balderas, R.S., Balomenos, D., Theofilopoulos, A.N. (1994). Lupus susceptibility loci in New Zealand mice. Proc. Natl. Acad. Sci. USA 91, 10168–10172.PubMedCrossRefGoogle Scholar
  9. Kotzin, B.L., Palmer, E. (1988). Genetic contributions to lupus-like disease in NZB/NZW mice. Am. J. Med. Genet. 85 (Suppl. 6A), 29–31.Google Scholar
  10. Lander, E.S., Schork, N.J. (1994). Genetic dissection of complex traits. Science 265, 2037–2048.PubMedCrossRefGoogle Scholar
  11. Love, J.M., Knight, A.M., McAleer, M.A., Todd, J.A. (1990). Towards construction of a high resolution map of the mouse genome using PCR-analysed microsatellites. Nucleic Acids Res. 18, 4123–1430.PubMedCrossRefGoogle Scholar
  12. Lu, C.C. (1990). Stable allelic lineages of MHC class II genes within the genus Mus. Ph.D. dissertation, University of Florida.Google Scholar
  13. Mohan, C., Adams, S., Stanik, V., Datta, S.K. (1993). Nucleosomes: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J. Exp. Med. 177, 1367–1375.PubMedCrossRefGoogle Scholar
  14. Morel, L., Rudofsky, U.H., Longmate, J.A., Schiffenbauer, J., Wakeland, E.K. (1994). Polygenetic control of susceptibility to murine systemic lupus erythematosus. Immunity 1, 219–229.PubMedCrossRefGoogle Scholar
  15. Prochazka, M., Serreze, D.V., Worthen, S.M., Leiter, E.H. (1989). Genetic control of diabetogenesis in NOD/Lt mice: development and analysis of congenic stocks. Diabetes 38, 1446–1455.PubMedCrossRefGoogle Scholar
  16. Roderick, T.H., Davisson, M.T., Doolittle, M.P., Dillyard, A.L. (1992). GBASE linkage map; Encyclopedia of the mouse genome. Linkmap v. 2.1. (Bar Harbor, Me.: The Jackson Laboratory).Google Scholar
  17. Rudofsky, U.H., Evans, B.D., Balaban, S.L., Mottironi, V.D., Gabrielsen, A.E. (1993). Differences in expression of lupus nephritis in New Zealand mixed H-2z homozygous inbred strains of mice derived from New Zealand black and New Zealand white mice. Origins and initial characterization. Lab. Invest. 68, 419–426.PubMedGoogle Scholar
  18. Serreze, D.V., Prochazka, M., Reifsnyder, P.C., Bridgett, M.M., Leiter, E.H. (1994). Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene. J. Exp. Med. 180, 1553–1558.PubMedCrossRefGoogle Scholar
  19. Snell, G.D. (1948). Methods for the study of histocompatibility genes. J. Genet. 49, 87–108.PubMedCrossRefGoogle Scholar
  20. Snell, G.D. (1958). Histocompatibility genes of the mouse. I. Demonstration of weak histocompatibility differences by immunization and controlled tumor dose. J. Natl. Cancer Inst. 20, 787–824.PubMedGoogle Scholar
  21. Theofilopoulos, A.D. (1992). Murine models of systemic lupus erythematosus. In: Systemic Lupus Erythematosus, R.G. Lahita, ed. (New York: Churchill Livingstone), pp. 121–194.Google Scholar
  22. Wicker, L.S., Todd, J.A., Prins, J.B., Podolin, P.L., Renjilian, R.J., Peterson, L.B. (1994). Resistance alleles at two non-major histocompatibility complex-linked insulin-dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes. J. Exp. Med. 180, 1705–1713.PubMedCrossRefGoogle Scholar
  23. Yui, M.A., Muralidharan, K., Moreno-Altamirano, B., Perrin, G., Chestnut, K., Wakeland, E.K. (1996). Production of congenic mouse strains carrying NOD-derived diabetogenic intervals: an approach for the genetic dissection of complex traits. Mamm. Genome 7, 331–334.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • L. Morel
    • 1
  • Y. Yu
    • 1
  • K. R. Blenman
    • 1
  • R. A. Caldwell
    • 1
  • E. K. Wakeland
    • 1
  1. 1.Department of Pathology and Laboratory Medicine and Center for Mammalian GeneticsUniversity of FloridaGainesvilleUSA

Personalised recommendations