Mammalian Genome

, Volume 7, Issue 1, pp 55–58 | Cite as

Genetic composition of the recombinant congenic strains

  • A. P. M. Stassen
  • P. C. Groot
  • J. T. Eppig
  • P. Demant
Original Contributions


For the study of biological phenomena influenced by multiple genes in mice, the Recombinant Congenic Strains (RCS) have been developed. An RCS series comprises approximately 20 homozygous strains, each of which contains on average 87.5% genes of a common background strain and 12.5% of a common donor strain. In an RCS series, non-linked genes involved in the control of a multigenic trait become distributed into different re-combinant congenic strains. In this way a multigenic trait is transformed into a series of single gene traits in which each gene can be studied individually. For the ability to use the strength of the recombinant congenic strains system to its full extent, a thorough genetic characterization is indispensable. We have typed the CcS/ Dem and OcB/Dem series for 611 and 550 markers, respectively. This results in a genetic characterization sufficient to detect most donor strain genes. In addition, we report the genetic characterization of the HcB/Dem and HcB(N4)/Dem series. Strains of the latter series contain on average 6.25% of the donor strain genome. Both series have been typed for 130 markers. All the typing data have been deposited in the Mouse Genome Database at The Jackson Laboratory.


Simple Sequence Repeat Marker Genetic Characterization Genetic Composition Background Strain Donor Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, D.W. (1981). Recombinant inbred strains and bilineal congenic strains. In The Mouse in Biomédical Research, H.L. Foster, J.D. Small, J.G. Fox, eds. New York, Academic Press, pp. 223–239.Google Scholar
  2. Demant, P. (1992). Genetic resolution of susceptibility to cancer—new perspectives. Seroin. Cancer Biol. 3, 159–166.Google Scholar
  3. Demant, P., Hart, A.A.M. (1986). Recombinant congenic strains—A new tool for analyzing genetic traits determined by more than one gene. Immunogenetics 24, 416–422.PubMedCrossRefGoogle Scholar
  4. Demant, P., Oomen, L.C.J.M., Oudshoorn-Snoek, M. (1989). Genetics of tumor susceptibility in the mouse: MHC and non-MHC genes. Adv. Cancer Res. 53, 117–179.PubMedCrossRefGoogle Scholar
  5. Dietrich, W.F., Katz, H., Lincoln, S.E., Shin, H.-S., Friedman, J., Dracopol, N.C., Lander, E.S. (1992). A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447.PubMedGoogle Scholar
  6. Dietrich, W.F., Miller, J.C., Steen, R.G., Merchant, M., Damron, D., Nahf, R., Gross, A., Joyce, D.C., Wessel, M., Dredge, R.D., Marquis, A., Stein, L.D., Goodman, N., Page, D.C., Lander, E.S. (1994). A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7, 220–245.PubMedCrossRefGoogle Scholar
  7. Fijneman, R.J.A., Ophoff, R.A., Hart, A.A.M., Demant, P. (1994). Kras-2 alleles, mutations, and lung tumor susceptibility in the mouse—an evaluation. Oncogene 9, 1417–1421.PubMedGoogle Scholar
  8. Groot, P.C., Moen, C.J.A., Dietrich, W., Stoye, J.P., Lander, E.S., Demant, P. (1992). The recombinant congenic strains for analysis of multigenic traits: genetic composition. FASEB J. 6, 2826–2835.PubMedGoogle Scholar
  9. Groot, P.C., Moen, C.J.A., Hart, A.A.M., Snoek, M., Demant, P. (1995). Recombinant congenic strains—genetic composition. In Genetic Variants and Strains of the Laboratory Mouse, 3rd ed., M.F. Lyon, Searle A.G., eds. (Oxford: Oxford University Press), in press.Google Scholar
  10. Laird, P.W., Zijderveld, A., Linders, K., Rudnicki, M.A., Jaenisch, R., Berns, A. (1991). Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 19, 4293.PubMedCrossRefGoogle Scholar
  11. Lipoldová, M., Kosarová, M., Zajícová A., Holán, V., Hart, A.A.M., Krulová, M., Demant, P. (1995). Separation of multiple genes controlling the T-cell proliferative response to IL-2 and anti-CD3 using recombinant congenic strains. Immunogenetics 41, 301–311.PubMedCrossRefGoogle Scholar
  12. Love, J.M., Knight, A.M., McAleer, M.A., Todd, J.A. (1990). Towards construction of a high resolution map of the mouse genome using PCR-analysed microsatellites. Nucleic Acids Res. 18, 4123–4130.PubMedCrossRefGoogle Scholar
  13. Moen, C.J.A., van der Valk, M.A., Snoek, M., van Zutphen, B.F.M., von Deimling, O., Hart, A.A.M., Demant, P. (1991). The recombinant congenic strains—a novel genetic tool applied to the study of colon tumor development in the mouse. Mamm. Genome 1, 217–227.PubMedCrossRefGoogle Scholar
  14. Moen, C.J.A., Snoek, M., Hart, A.A.M., Demant, P. (1992). Scc-1, a novel colon cancer susceptibility gene in the mouse: linkage to CD44 (Ly-24, Pgp-1 on chromosome 2. Oncogene 7, 563–566.PubMedGoogle Scholar
  15. Mori, N., Okumoto, M., van der Valk, M.A., Imai, S., Haga, S., Esaki, K., Hart, A.A.M., Demant, P. (1995). Genetic dissection of susceptibility to radiation-induced apoptosis of thymocytes and mapping of Rapopl, a novel susceptibility gene. Genomics 25, 609–614.PubMedCrossRefGoogle Scholar
  16. Stoffers, H.J., Moen, C.J.A., Hart, A.A.M., Westerhoff, H.V., Demant, P. Computer simulation of the genetic composition of recombinant congenic strains. Submitted.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. P. M. Stassen
    • 1
  • P. C. Groot
    • 1
  • J. T. Eppig
    • 2
  • P. Demant
    • 1
  1. 1.Division of Molecular GeneticsThe Netherlands Cancer InstituteCX AmsterdamThe Netherlands
  2. 2.Mouse Genome InformaticsThe Jackson LaboratoryBar HarborUSA

Personalised recommendations