Advertisement

Mammalian Genome

, Volume 29, Issue 11–12, pp 757–769 | Cite as

The role of proteomics in the age of immunotherapies

  • Sarah A. HayesEmail author
  • Stephen Clarke
  • Nick Pavlakis
  • Viive M. Howell
Article

Abstract

The antigenic landscape of the adaptive immune response is determined by the peptides presented by immune cells. In recent years, a number of immune-based cancer therapies have been shown to induce remarkable clinical responses through the activation of the patient’s immune system. As a result, there is a need to identify immune biomarkers capable of predicting clinical response. Recent advances in proteomics have led to considerable developments in the more comprehensive profiling of the immune response. “Immunoproteomics” utilises a rapidly increasing collection of technologies in order to identify and quantify antigenic peptides or proteins. This includes gel-based, array-based, mass spectrometry (MS), DNA-based, or computer-based (in silico) approaches. Immunoproteomics is yielding an understanding of disease and disease progression, vaccine candidates, and biomarkers to a depth not before understood. This review gives an overview of the emerging role of proteomics in improving personalisation of immunotherapy treatment.

Notes

Acknowledgements

Sarah A. Hayes gratefully acknowledges financial support from Mr. Peter Pickles and the Pickles Foundation.

References

  1. Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka EK (2011) Proteomics for development of vaccine. J Proteomics 74:2596–2616PubMedGoogle Scholar
  2. Alvarez B, Barra C, Nielsen M, Andreatta M (2018) Computational tools for the identification and interpretation of sequence motifs in immunopeptidomes. Proteomics 18:e1700252PubMedGoogle Scholar
  3. Andreatta M, Nielsen M (2016) Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32:511–517PubMedGoogle Scholar
  4. Andtbacka RHI, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS, Milhem M, Cranmer L, Curti B, Lewis K, Ross M, Guthrie T, Linette GP, Daniels GA, Harrington K, Middleton MR, Miller WH Jr, Zager JS, Ye Y, Yao B, Li A, Doleman S, Van Der Walde A, Gansert J, Coffin RS (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33:2780–2788PubMedGoogle Scholar
  5. Anjo SI, Santa C, Manadas B (2017) SWATH-MS as a tool for biomarker discovery: from basic research to clinical applications. Proteomics 17:e1600278Google Scholar
  6. Bassani-Sternberg M, Coukos G (2016) Mass spectrometry-based antigen discovery for cancer immunotherapy. Curr Opin Immunol 41:9–17PubMedGoogle Scholar
  7. Bassani-Sternberg M, Barnea E, Beer I, Avivi I, Katz T, Admon A (2010) Soluble plasma HLA peptidome as a potential source for cancer biomarkers. Proc Natl Acad Sci USA 107:18769–18776PubMedGoogle Scholar
  8. Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M (2015) Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol Cell Proteomics 14:658–673PubMedPubMedCentralGoogle Scholar
  9. Bassani-Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S, Straub M, Weber J, Slotta-Huspenina J, Specht K (2016) Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun 7:13404PubMedPubMedCentralGoogle Scholar
  10. Berlin C, Kowalewski D, Schuster H, Mirza N, Walz S, Handel M, Schmid-Horch B, Salih H, Kanz L, Rammensee H (2015) Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. Leukemia 29:647PubMedGoogle Scholar
  11. Blatnik R, Mohan N, Bonsack M, Falkenby LG, Hoppe S, Josef K, Steinbach A, Becker S, Nadler WM, Rucevic M, Larsen MR, Salek M, Riemer AB (2018) A targeted LC-MS strategy for low-abundant HLA class-I-presented peptide detection identifies novel human papillomavirus T-cell epitopes. Proteomics 18:e1700390PubMedGoogle Scholar
  12. Blixt O, Cló E, Nudelman AS, Sørensen KK, Clausen T, Wandall HH, Livingston PO, Clausen H, Jensen KJ (2010) A high-throughput O-glycopeptide discovery platform for seromic profiling. J Proteome Res 9:5250–5261PubMedPubMedCentralGoogle Scholar
  13. Bobisse S, Foukas PG, Coukos G, Harari A (2016) Neoantigen-based cancer immunotherapy. Ann Transl Med 4:262PubMedPubMedCentralGoogle Scholar
  14. Bourmaud A, Gallien S, Domon B (2016) Parallel reaction monitoring using quadrupole-orbitrap mass spectrometer: principle and applications. Proteomics 16:2146–2159PubMedGoogle Scholar
  15. Carlsson A, Persson O, Ingvarsson J, Widegren B, Salford L, Borrebaeck CA, Wingren C (2010) Plasma proteome profiling reveals biomarker patterns associated with prognosis and therapy selection in glioblastoma multiforme patients. Proteomics Clin Appl 4:591–602PubMedGoogle Scholar
  16. Caron E, Kowalewski DJ, Chiek Koh C, Sturm T, Schuster H, Aebersold R (2015) Analysis of major histocompatibility complex (MHC) immunopeptidomes using mass spectrometry. Mol Cell Proteomics 14:3105–3117PubMedPubMedCentralGoogle Scholar
  17. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER, Linette GP (2015) Cancer immunotherapy: a dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348:803–808CrossRefGoogle Scholar
  18. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM (2009) The prioritization of cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337PubMedPubMedCentralGoogle Scholar
  19. Chong C, Marino F, Pak H, Racle J, Daniel RT, Muller M, Gfeller D, Coukos G, Bassani-Sternberg M (2018) High-throughput and sensitive immunopeptidomics platform reveals profound interferongamma-mediated remodeling of the human leukocyte antigen (HLA) ligandome. Mol Cell Proteomics 17:533–548PubMedGoogle Scholar
  20. Comber JD, Philip R (2014) MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines. Ther Adv Vaccines 2:77–89PubMedPubMedCentralGoogle Scholar
  21. Delfani P, Dexlin Mellby L, Nordström M, Holmér A, Ohlsson M, Borrebaeck CAK, Wingren C (2016) Technical advances of the recombinant antibody microarray technology platform for clinical immunoproteomics. PLoS ONE 11:e0159138PubMedPubMedCentralGoogle Scholar
  22. Desmetz C, Cortijo C, Mangé A, Solassol J (2009) Humoral response to cancer as a tool for biomarker discovery. J Proteomics 72:982–988PubMedGoogle Scholar
  23. Desmetz C, Mange A, Maudelonde T, Solassol J (2011) Autoantibody signatures: progress and perspectives for early cancer detection. J Cell Mol Med 15:2013–2024PubMedPubMedCentralGoogle Scholar
  24. Dholaria B, Hammond W, Shreders A, Lou Y (2016) Emerging therapeutic agents for lung cancer. J Hematol Oncol 9:138PubMedPubMedCentralGoogle Scholar
  25. Dutoit V, Herold-Mende C, Hilf N, Schoor O, Beckhove P, Bucher J, Dorsch K, Flohr S, Fritsche J, Lewandrowski P, Lohr J, Rammensee HG, Stevanovic S, Trautwein C, Vass V, Walter S, Walker PR, Weinschenk T, Singh-Jasuja H, Dietrich PY (2012) Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 135:1042–1054PubMedGoogle Scholar
  26. Freedman A, Neelapu SS, Nichols C, Robertson MJ, Djulbegovic B, Winter JN, Bender JF, Gold DP, Ghalie RG, Stewart ME, Esquibel V, Hamlin P (2009) Placebo-controlled phase III trial of patient-specific immunotherapy with mitumprotimut-T and granulocyte-macrophage colony-stimulating factor after rituximab in patients with follicular lymphoma. J Clin Oncol 27:3036–3043PubMedPubMedCentralGoogle Scholar
  27. Fulton KM, Twine SM (2013) Immunoproteomics: current technology and applications. Methods Mol Biol 1061:21–57PubMedGoogle Scholar
  28. Galassie AC, Link AJ (2015) Proteomic contributions to our understanding of vaccine and immune responses. Proteomics Clin Appl 9:972–989PubMedPubMedCentralGoogle Scholar
  29. Gallien S, Kim SY, Domon B (2015) Large-scale targeted proteomics using internal standard triggered-parallel reaction monitoring (IS-PRM). Mol Cell Proteomics 14:1630–1644PubMedPubMedCentralGoogle Scholar
  30. Ganesan V, Ascherman DP, Minden JS (2016) Immunoproteomics technologies in the discovery of autoantigens in autoimmune diseases. Biomol Concepts 7:133–143PubMedGoogle Scholar
  31. Gautam P, Sundaram CS, Madan T, Gade WN, Shah A, Sirdeshmukh R, Sarma PU (2007) Identification of novel allergens of Aspergillus fumigatus using immunoproteomics approach. Clin Exp Allergy 37:1239–1249PubMedGoogle Scholar
  32. Gloger A, Ritz D, Fugmann T, Neri D (2016) Mass spectrometric analysis of the HLA class I peptidome of melanoma cell lines as a promising tool for the identification of putative tumor-associated HLA epitopes. Cancer Immunol Immunother 65:1377–1393PubMedPubMedCentralGoogle Scholar
  33. Gnjatic S, Ritter E, Buchler MW, Giese NA, Brors B, Frei C, Murray A, Halama N, Zornig I, Chen YT, Andrews C, Ritter G, Old LJ, Odunsi K, Jager D (2010) Seromic profiling of ovarian and pancreatic cancer. Proc Natl Acad Sci USA 107:5088–5093PubMedGoogle Scholar
  34. Granados DP, Sriranganadane D, Daouda T, Zieger A, Laumont CM, Caron-Lizotte O, Boucher G, Hardy M-P, Gendron P, Côté C (2014) Impact of genomic polymorphisms on the repertoire of human MHC class I-associated peptides. Nat Commun 5:3600PubMedPubMedCentralGoogle Scholar
  35. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber W-J (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515:577PubMedPubMedCentralGoogle Scholar
  36. Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang XY (2013) Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 119:421–475PubMedPubMedCentralGoogle Scholar
  37. Haanen JB, Robert C (2015) Immune checkpoint inhibitors. Prog Tumor Res 42:55–66PubMedGoogle Scholar
  38. Haen SP, Rammensee H-G (2013) The repertoire of human tumor-associated epitopes: identification and selection of antigens and their application in clinical trials. Curr Opin Immunol 25:277–283PubMedGoogle Scholar
  39. Hardouin J, Lasserre JP, Canelle L, Duchateau M, Vlieghe C, Choquet-Kastylevsky G, Joubert-Caron R, Caron M (2007a) Usefulness of autoantigens depletion to detect autoantibody signatures by multiple affinity protein profiling. J Sep Sci 30:352–358PubMedGoogle Scholar
  40. Hardouin J, Lasserre JP, Sylvius L, Joubert-Caron R, Caron M (2007b) Cancer immunomics: from serological proteome analysis to multiple affinity protein profiling. Ann N Y Acad Sci 1107:223–230PubMedGoogle Scholar
  41. Hassan C, Kester MG, de Ru AH, Hombrink P, Drijfhout JW, Nijveen H, Leunissen JA, Heemskerk MH, Falkenburg JH, van Veelen PA (2013) The human leukocyte antigen-presented ligandome of B lymphocytes. Mol Cell Proteomics 12:1829–1843PubMedPubMedCentralGoogle Scholar
  42. Haura EB, Beg AA, Rix U, Antonia S (2015) Cancer immunology at the crossroads: functional proteomics: charting immune signaling proteomes en route to new therapeutic strategies. Cancer Immunol Res 3:714–720PubMedPubMedCentralGoogle Scholar
  43. Heyder T, Kohler M, Tarasova NK, Haag S, Rutishauser D, Rivera NV, Sandin C, Mia S, Malmström V, Wheelock ÅM, Wahlström J, Holmdahl R, Eklund A, Zubarev RA, Grunewald J, Ytterberg AJ (2016) Approach for identifying human leukocyte antigen (HLA)-DR bound peptides from scarce clinical samples. Mol Cell Proteomics 15:3017–3029PubMedPubMedCentralGoogle Scholar
  44. Hickman HD, Batson CL, Prilliman KR, Crawford DL, Jackson KL, Hildebrand WH (2000) C-terminal epitope tagging facilitates comparative ligand mapping from MHC class I positive cells. Hum Immunol 61:1339–1346PubMedGoogle Scholar
  45. Hu CJ, Song G, Huang W, Liu GZ, Deng CW, Zeng HP, Wang L, Zhang FC, Zhang X, Jeong JS, Blackshaw S, Jiang LZ, Zhu H, Wu L, Li YZ (2012) Identification of new autoantigens for primary biliary cirrhosis using human proteome microarrays. Mol Cell Proteomics 11:669–680PubMedPubMedCentralGoogle Scholar
  46. Hudson ME, Pozdnyakova I, Haines K, Mor G, Snyder M (2007) Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc Natl Acad Sci USA 104:17494–17499PubMedGoogle Scholar
  47. Iakovlev VV, Pintilie M, Morrison A, Fyles AW, Hill RP, Hedley DW (2007) Effect of distributional heterogeneity on the analysis of tumor hypoxia based on carbonic anhydrase IX. Lab Invest 87:1206–1217PubMedGoogle Scholar
  48. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216PubMedGoogle Scholar
  49. Jhaveri DT, Kim MS, Thompson ED, Huang L, Sharma R, Klein AP, Zheng L, Le DT, Laheru DA, Pandey A, Jaffee EM, Anders RA (2016) Using quantitative seroproteomics to identify antibody biomarkers in pancreatic cancer. Cancer Immunol Res 4:225–233PubMedPubMedCentralGoogle Scholar
  50. Jones TD, Eble JN, Wang M, Maclennan GT, Jain S, Cheng L (2005) Clonal divergence and genetic heterogeneity in clear cell renal cell carcinomas with sarcomatoid transformation. Cancer 104:1195–1203PubMedGoogle Scholar
  51. June CH, Riddell SR, Schumacher TN (2015) Adoptive cellular therapy: a race to the finish line. Sci Transl Med 7:280ps287Google Scholar
  52. Jungblut PR (2001) Proteome analysis of bacterial pathogens. Microbes Infect 3:831–840PubMedGoogle Scholar
  53. Kalaora S, Barnea E, Merhavi-Shoham E, Qutob N, Teer JK, Shimony N, Schachter J, Rosenberg SA, Besser MJ, Admon A (2016) Use of HLA peptidomics and whole exome sequencing to identify human immunogenic neo-antigens. Oncotarget 7:5110PubMedPubMedCentralGoogle Scholar
  54. Khodadoust MS, Olsson N, Wagar LE, Haabeth OA, Chen B, Swaminathan K, Rawson K, Liu CL, Steiner D, Lund P (2017) Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. Nature 543:723PubMedPubMedCentralGoogle Scholar
  55. Klar R, Schober S, Rami M, Mall S, Merl J, Hauck S, Ueffing M, Admon A, Slotta-Huspenina J, Schwaiger M (2014) Therapeutic targeting of naturally presented myeloperoxidase-derived HLA peptide ligands on myeloid leukemia cells by TCR-transgenic T cells. Leukemia 28:2355PubMedGoogle Scholar
  56. Ladjemi MZ (2012) Anti-idiotypic antibodies as cancer vaccines: achievements and future improvements. Front Oncol 2:158PubMedPubMedCentralGoogle Scholar
  57. Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform 8:424Google Scholar
  58. Levy R, Ganjoo KN, Leonard JP, Vose JM, Flinn IW, Ambinder RF, Connors JM, Berinstein NL, Belch AR, Bartlett NL, Nichols C, Emmanouilides CE, Timmerman JM, Gregory SA, Link BK, Inwards DJ, Freedman AS, Matous JV, Robertson MJ, Kunkel LA, Ingolia DE, Gentles AJ, Liu CL, Tibshirani R, Alizadeh AA, Denney DW (2014) Active idiotypic vaccination versus control immunotherapy for follicular lymphoma. J Clin Oncol 32:1797–1803PubMedPubMedCentralGoogle Scholar
  59. Li X, Shao C, Shi Y, Han W (2018) Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol 11:31PubMedGoogle Scholar
  60. Liikanen I, Koski A, Merisalo-Soikkeli M, Hemminki O, Oksanen M, Kairemo K, Joensuu T, Kanerva A, Hemminki A (2015) Serum HMGB1 is a predictive and prognostic biomarker for oncolytic immunotherapy. Oncoimmunology 4:e989771PubMedPubMedCentralGoogle Scholar
  61. Lill JR, Veelen PA, Tenzer S, Admon A, Caron E, Elias JE, Heck AJR, Marcilla M, Marino F, Müller M, Peters B, Purcell A, Sette A, Sturm T, Ternette N, Vizcaíno JA, Bassani-Sternberg M (2018) Minimal information about an immuno-peptidomics experiment (MIAIPE). Proteomics.  https://doi.org/10.1002/pmic.201800110 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lin HH, Ray S, Tongchusak S, Reinherz EL, Brusic V (2008) Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol 9:8PubMedPubMedCentralGoogle Scholar
  63. Lipson EJ, Forde PM, Hammers HJ, Emens LA, Taube JM, Topalian SL (2015) Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol 42:587–600PubMedPubMedCentralGoogle Scholar
  64. Loffler MW, Chandran PA, Laske K, Schroeder C, Bonzheim I, Walzer M, Hilke FJ, Trautwein N, Kowalewski DJ, Schuster H, Gunder M, Carcamo Yanez VA, Mohr C, Sturm M, Nguyen HP, Riess O, Bauer P, Nahnsen S, Nadalin S, Zieker D, Glatzle J, Thiel K, Schneiderhan-Marra N, Clasen S, Bosmuller H, Fend F, Kohlbacher O, Gouttefangeas C, Stevanovic S, Konigsrainer A, Rammensee HG (2016) Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient. J Hepatol 65:849–855PubMedPubMedCentralGoogle Scholar
  65. Lu Y-C, Robbins PF (2016) Cancer immunotherapy targeting neoantigens. Semin Immunol 28:22–27PubMedGoogle Scholar
  66. Lu Y, Yang L, Wei W, Shi Q (2017) Microchip-based single-cell functional proteomics for biomedical applications. Lab Chip 17:1250–1263PubMedPubMedCentralGoogle Scholar
  67. Lundegaard C, Lund O, Nielsen M (2008) Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics 24:1397–1398PubMedGoogle Scholar
  68. Ma C, Fan R (2013) Single cell functional proteomics for assessing immune response in cancer therapy: technology, methods, and applications. Front Oncol.  https://doi.org/10.3389/fonc.2013.00133 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Menschaert G, Vandekerckhove TT, Baggerman G, Schoofs L, Luyten W, Criekinge WV (2010) Peptidomics coming of age: a review of contributions from a bioinformatics angle. J Proteome Res 9:2051–2061PubMedGoogle Scholar
  70. Mommen GPM, Frese CK, Meiring HD, van Gaans-van den Brink J, de Jong APJM, van Els CACM, Heck AJR (2014) Expanding the detectable HLA peptide repertoire using electron-transfer/higher-energy collision dissociation (EThcD). Proc Natl Acad Sci USA 111:4507–4512PubMedGoogle Scholar
  71. Morales-Betanzos CA, Lee H, Gonzalez-Ericsson PI, Balko JM, Johnson DB, Zimmerman LJ, Liebler DC (2017) Quantitative mass spectrometry analysis of PD-L1 protein expression, N-glycosylation and expression stoichiometry with PD-1 and PD-L2 in human melanoma. Mol Cell Proteomics 16:1705–1717PubMedPubMedCentralGoogle Scholar
  72. Muller MR, Grunebach F, Nencioni A, Brossart P (2003) Transfection of dendritic cells with RNA induces CD4- and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol 170:5892–5896PubMedGoogle Scholar
  73. Murphy JP, Konda P, Kowalewski DJ, Schuster H, Clements D, Kim Y, Cohen AM, Sharif T, Nielsen M, Stevanovic S, Lee PW, Gujar S (2017) MHC-I ligand discovery using targeted database searches of mass spectrometry data: implications for T-cell immunotherapies. J Proteome Res 16:1806–1816PubMedGoogle Scholar
  74. Nocito M, Montalbán C, González-Porque P, Villar LM (1997) Increased soluble serum HLA class I antigens in patients with lymphoma. Hum Immunol 58:106–111PubMedGoogle Scholar
  75. Olsen JV, Mann M (2013) Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 12:3444–3452PubMedPubMedCentralGoogle Scholar
  76. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252PubMedPubMedCentralGoogle Scholar
  77. Perna F, Berman SH, Soni RK, Mansilla-Soto J, Eyquem J, Hamieh M, Hendrickson RC, Brennan CW, Sadelain M (2017) Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell 32:506–519PubMedGoogle Scholar
  78. Pitarch A, Nombela C, Gil C (2016) Top-down characterization data on the speciation of the Candida albicans immunome in candidemia. Data Brief 6:257–261PubMedGoogle Scholar
  79. Qendro V, Lundgren Deborah H, Palczewski S, Hegde P, Stevenson C, Perpetua L, Latifi A, Merriman J, Bugos G, Han David K (2017) Discovery of putative breast cancer antigens using an integrative platform of genomics-driven immunoproteomics. Proteomics 17:1600318Google Scholar
  80. Qian M, Wang DC, Chen H, Cheng Y (2017) Detection of single cell heterogeneity in cancer. Semin Cell Dev Biol 64:143–149PubMedGoogle Scholar
  81. Rauniyar N (2015) Parallel reaction monitoring: a targeted experiment performed using high resolution and high mass accuracy mass spectrometry. Int J Mol Sci 16:28566–28581PubMedPubMedCentralGoogle Scholar
  82. Ritz D, Gloger A, Neri D, Fugmann T (2017) Purification of soluble HLA class I complexes from human serum or plasma deliver high quality immuno peptidomes required for biomarker discovery. Proteomics 17:1600364Google Scholar
  83. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915PubMedPubMedCentralGoogle Scholar
  84. Rowshanravan B, Halliday N, Sansom DM (2018) CTLA-4: a moving target in immunotherapy. Blood 131:58–67PubMedGoogle Scholar
  85. Rozanov DV, Rozanov ND, Chiotti KE, Reddy A, Wilmarth PA, David LL, Cha SW, Woo S, Pevzner P, Bafna V, Burrows GG, Rantala JK, Levin T, Anur P, Johnson-Camacho K, Tabatabaei S, Munson DJ, Bruno TC, Slansky JE, Kappler JW, Hirano N, Boegel S, Fox BA, Egelston C, Simons DL, Jimenez G, Lee PP, Gray JW, Spellman PT (2018) MHC class I loaded ligands from breast cancer cell lines: a potential HLA-I-typed antigen collection. J Proteomics 176:13–23PubMedPubMedCentralGoogle Scholar
  86. Sahin U, Türeci Ö (2018) Personalized vaccines for cancer immunotherapy. Science 359:1355–1360PubMedGoogle Scholar
  87. Sahin U, Türeci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92:11810–11813PubMedGoogle Scholar
  88. Schubert B, Brachvogel HP, Jurges C, Kohlbacher O (2015) EpiToolKit: a web-based workbench for vaccine design. Bioinformatics 31:2211–2213PubMedPubMedCentralGoogle Scholar
  89. Schultze JL, Vonderheide RH (2001) From cancer genomics to cancer immunotherapy: toward second-generation tumor antigens. Trends Immunol 22:516–523PubMedGoogle Scholar
  90. Schuster SJ, Neelapu SS, Gause BL, Janik JE, Muggia FM, Gockerman JP, Winter JN, Flowers CR, Nikcevich DA, Sotomayor EM, McGaughey DS, Jaffe ES, Chong EA, Reynolds CW, Berry DA, Santos CF, Popa MA, McCord AM, Kwak LW (2011) Vaccination with patient-specific tumor-derived antigen in first remission improves disease-free survival in follicular lymphoma. J Clin Oncol 29:2787–2794PubMedPubMedCentralGoogle Scholar
  91. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61PubMedGoogle Scholar
  92. Shetty V, Nickens Z, Testa J, Hafner J, Sinnathamby G, Philip R (2012) Quantitative immunoproteomics analysis reveals novel MHC class I presented peptides in cisplatin-resistant ovarian cancer cells. J Proteomics 75:3270–3290PubMedGoogle Scholar
  93. Singh-Jasuja H, Emmerich NP, Rammensee HG (2004) The Tubingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. Cancer Immunol Immunother 53:187–195PubMedGoogle Scholar
  94. Syn NL, Teng MW, Mok TS, Soo RA (2017) De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 18:e731–e741PubMedGoogle Scholar
  95. Topp MS, Kufer P, Gökbuget N, Goebeler M, Klinger M, Neumann S, Horst HA, Raff T, Viardot A, Schmid M, Stelljes M, Schaich M, Degenhard E, Köhne-Volland R, Brüggemann M, Ottmann O, Pfeifer H, Burmeister T, Nagorsen D, Schmidt M, Lutterbuese R, Reinhardt C, Baeuerle PA, Kneba M, Einsele H, Riethmüller G, Hoelzer D, Zugmaier G, Bargou RC (2011) Targeted therapy with the T-cell: engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 29:2493–2498PubMedGoogle Scholar
  96. Vergati M, Intrivici C, Huen N-Y, Schlom J, Tsang KY (2010) Strategies for cancer vaccine development. J Biomed Biotechnol.  https://doi.org/10.1155/2010/596432 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A, Peters B (2015) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43:D405–D412PubMedGoogle Scholar
  98. Walz S, Stickel JS, Kowalewski DJ, Schuster H, Weisel K, Backert L, Kahn S, Nelde A, Stroh T, Handel M, Kohlbacher O, Kanz L, Salih HR, Rammensee HG, Stevanovic S (2015) The antigenic landscape of multiple myeloma: mass spectrometry (re)defines targets for T-cell-based immunotherapy. Blood 126:1203–1213PubMedPubMedCentralGoogle Scholar
  99. Wang W, Epler J, Salazar LG, Riddell SR (2006) Recognition of breast cancer cells by CD8 + cytotoxic T-cell clones specific for NY-BR-1. Cancer Res 66:6826–6833PubMedGoogle Scholar
  100. Weber JS, Sznol M, Sullivan RJ, Blackmon S, Boland G, Kluger HM, Halaban R, Bacchiocchi A, Ascierto PA, Capone M, Oliveira C, Meyer K, Grigorieva J, Asmellash SG, Roder J, Roder H (2018) A serum protein signature associated with outcome after anti-PD-1 therapy in metastatic melanoma. Cancer Immunol Res 6:79–86PubMedGoogle Scholar
  101. Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, Kurek R, Loeser W, Bichler KH, Wernet D, Stevanovic S, Rammensee HG (2002) Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res 62:5818–5827PubMedGoogle Scholar
  102. Wittke S, Baxmann S, Fahlenkamp D, Kiessig ST (2016) Tumor heterogeneity as a rationale for a multi-epitope approach in an autologous renal cell cancer tumor vaccine. Onco Targets Ther 9:523–537PubMedPubMedCentralGoogle Scholar
  103. Wu X, Giobbie-Hurder A, Liao X, Connelly C, Connolly EM, Li J, Manos MP, Lawrence D, McDermott D, Severgnini M, Zhou J, Gjini E, Lako A, Lipschitz M, Pak CJ, Abdelrahman S, Rodig S, Hodi FS (2017) Angiopoietin-2 as a biomarker and target for immune checkpoint therapy. Cancer Immunol Res 5:17–28PubMedGoogle Scholar
  104. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung TK, Fritsche J, Weinschenk T (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515:572PubMedGoogle Scholar
  105. Ye Z, Li Z, Jin H, Qian Q (2016) Therapeutic cancer vaccines. Adv Exp Med Biol 909:139–167PubMedGoogle Scholar
  106. Yuan J, Zhou J, Dong Z, Tandon S, Kuk D, Panageas KS, Wong P, Wu X, Naidoo J, Page DB (2014) Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab. Cancer Immunol Res 2:127–132PubMedGoogle Scholar
  107. Yuan J, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO, Kvistborg P, Maccalli C, Maecker HT, Page DB (2016) Novel technologies and emerging biomarkers for personalized cancer immunotherapy. JITC 4:3PubMedGoogle Scholar
  108. Zaenker P, Ziman MR (2013) Serologic autoantibodies as diagnostic cancer biomarkers: a review. Cancer Epidemiol Biomark Prev 22:2161–2181Google Scholar
  109. Zhang GL, Ansari HR, Bradley P, Cawley GC, Hertz T, Hu X, Jojic N, Kim Y, Kohlbacher O, Lund O, Lundegaard C, Magaret CA, Nielsen M, Papadopoulos H, Raghava GPS, Tal V-S, Xue LC, Yanover C, Zhu S, Rock MT, Crowe JE, Panayiotou C, Polycarpou MM, Duch W, Brusic V (2011) Machine learning competition in immunology: prediction of HLA class I binding peptides. J Immunol Methods 374:1–4PubMedGoogle Scholar
  110. Zhao Y, Brasier AR (2016) Qualification and verification of protein biomarker candidates. Adv Exp Med Biol 919:493–514PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sarah A. Hayes
    • 1
    • 2
    Email author
  • Stephen Clarke
    • 1
    • 2
    • 3
  • Nick Pavlakis
    • 1
    • 2
    • 3
  • Viive M. Howell
    • 1
    • 2
  1. 1.Bill Walsh Translational Cancer Research Laboratory, Hormones and Cancer, Kolling Institute of Medical ResearchRoyal North Shore HospitalSydneyAustralia
  2. 2.Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyAustralia
  3. 3.Department of Medical OncologyRoyal North Shore HospitalSydneyAustralia

Personalised recommendations